Roughness at the depinning threshold for a long-range elastic string

Alberto Rosso* and Werner Krauth†

CNRS-Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France

(Received 27 July 2001; revised manuscript received 8 October 2001; published 23 January 2002)

In this paper, we compute to high precision the roughness exponent ζ of a long-range elastic string, at the depinning threshold, in a random medium. Our numerical method exploits the analytic structure of the problem (“no-passing” theorem), but avoids direct simulation of the evolution equations. The roughness exponent has recently been studied by simulations, functional renormalization-group calculations, and by experiments (fracture of solids, liquid meniscus in 4He). Our result $\zeta = 0.388 \pm 0.002$ is significantly larger than what was stated in previous simulations, which were consistent with a one-loop renormalization-group calculation. Furthermore, the data are incompatible with the experimental results for crack propagation in solids and for a 4He contact line on a rough substrate. This implies that the experiments cannot be described by pure harmonic long-range elasticity in the quasistatic limit.

The last term in this equation accounts for long-range restoring forces. Let us note that measurements of local velocities for a liquid 4He contact line [4] have cast doubts on the validity of the quasistatic hypothesis for the present experiments.

The direct numerical simulation of the dynamics, especially of long-range systems, in the depinning region, is extremely tedious because the velocity of the manifold vanishes at the threshold, which is thus difficult to approach [19,20]. Many authors, therefore, preferred to treat the problem within the framework of cellular automaton models. These approaches can be very useful, but are hardly identifiable with a continuum equation (concerning the long-range case; cf. Refs. [16,21]).

However, there is an additional analytical structure in this problem, as first noticed by Middleton [23] for the continuum models. For short-range lattice models [10,22], we used this additional information to compute the critical string

\[\frac{\partial}{\partial t} h(x,t) = f + \eta(x,h) - k \int dx_1 \frac{h(x,t) - h(x_1,t)}{(x-x_1)^2}. \]
where \(c \) are two strings, they will remain so for all later times.

To proceed, we discretize the variable \(x(x=x_i,t) \) in Eq. (1) and write \(h_i' \) instead of \(h(x_i,t) \). The complete string at time \(t \) is thus given by \(h' = \{h_1', h_2', \ldots, h_M'\} \), where the \(h_i' \) are real periodic variables for which \(h_1 + M \) and \(h_i \) are identified. Periodic boundary conditions are also applied in \(L \): \(h_{i+1} = h_i \). The equation of motion (1) is adapted to accommodate the periodic boundary conditions. We have computed the long-range force \(f^{\text{ed}} \) by summing over periodic images, as others have done before us [14,15], obtaining

\[
f^{\text{ed}}[h_i] = \sum_{i_1=1}^{L-1} \left[2 \psi'/(i_1/L) - \pi^2/\sin^2(\pi i_1/L) \right] \frac{h_i'' - h_{i+1}''}{L^2}.
\]

where \(\psi = d\Gamma(x)/dx \) and \(\Gamma(x) \) is the gamma function. Different calculations, without the sum of images, gave an identical result for \(\zeta \). A random potential \(V(i,h_i) \) acts on each site of the string. Our choice of the random potential is shown in Fig. 1. It allows to obtain a differentiable potential with \(\eta(i,h_i) = -\partial V(i,h_i)/\partial h_i \).

The “no-passing” rule [23] establishes the following: if two strings \(h \) and \(\tilde{h} \) do not cross at a given time \(t \) (say, \(h_i' < \tilde{h}_i' \) \(\forall i \)), they will not cross at any later time. Another important property of Middleton’s theorem states that if, at an initial time \(t_{\text{init}} \), the velocities \(v_i' \) are non-negative for all \(i \), they will remain so for all later times \(t > t_{\text{init}} \). It follows from this property that, once we have found a forward moving string \(h^{\text{eff}} \), we can be sure that snapshots of the string at later times will never cross. In fact, the strings \(h_i' \) for \(t > t_{\text{init}} \) will form a noncrossing family with non-negative velocities, which satisfies the following conditions:

\[
\begin{align*}
(i) \quad & h_i' = h_i' \quad \forall i \quad \text{for} \quad t > t' > t_{\text{init}}, \\
(ii) \quad & h_i' = h_i' \quad \text{for} \quad t > t' > t_{\text{init}}, \quad t' > t, \\
(iii) \quad & v(h_i') = \frac{0}{0} \quad \forall i \quad \text{for} \quad t > t_{\text{init}}, \\
(iv) \quad & \frac{\partial}{\partial t} h_i' = v(h_i') \quad \text{from Eq. (1)},
\end{align*}
\]

The velocity \(v(h_i') \) is given, as usual, by \(v(h_i') = -\partial E(h_i')/\partial h_i' \), where \(E(h_i') \) is the energy of the configuration \(h_i' \). In this context, we have made the following observation: if our only aim is to obtain the critical string, rather than to simulate the true time behavior, it is sufficient to generate continuous noncrossing families satisfying (i), (ii), and (iii), without imposing (iv). In this case, \(t \) would not be the physical time, but simply an ordering index; only then are the three conditions (i), (ii), and (iii) independent.

To assure that we can drop the condition (iv), we have to guarantee that no member of such a family will ever cross a blocked string \(h^{\text{block}} \) [by definition \(v(h_i^{\text{block}}) = 0 \)], if \(h_i^{\text{init}} \) did not. Let us suppose the contrary: if \(h_i^{\text{block}} \) were the first member which touches the blocked line in one point \(t \) [as shown in Fig. 2(a)], the random force for \(h_i^{\text{block}} \) and \(h_i^{\text{eff}} \) would become equal, but the elastic term would give \(v(h_i^{\text{eff}}) < v(h_i^{\text{block}}) \). This would be a violation of condition (iii). Conversely, it is easy to see that such a family can always be continued up to a blocked line, because it suffices to find a single point \(i \) with positive velocity to continue the construction.

In previous works [19], the critical line was computed by direct simulation of Eq. (1). Notice that the discretization of time can pose difficult problems; during the interval time \(\Delta t \) the motion does not respect Middleton’s theorem and, therefore, is not guaranteed to halt in front of a blocked string.
The construction of continuous noncrossing families of strings presents a much more powerful, completely rigorous approach. As indicated in Fig. 2, we consider in practice families in which at a given instant only a single coordinate i moves. Coordinate i is then advanced (from h_i to h_i') until its velocity vanishes \(\langle v(h'_i) = 0 \rangle \). This is of course not done by simulation, but in a single step, by computing the zeros of \(v(h_i) \). To simplify our numerical work, we have represented the continuous random potential as a spline (a piecewise third-order polynomial in \(h \)), as further explained in Fig. (1). This allows us to solve for the closest zero of the velocity function from a quadratic equation. The only parameter in this procedure is the minimal velocity below which the total string is assumed blocked, and which serves to terminate our iteration. We have varied this nonessential parameter by four orders of magnitude, and shown that the critical forces and exponents are extremely well stabilized.

An initial forward-moving string \(h_{\text{init}} \) is very easy to obtain. We have remarked that our iterative algorithm, which is completely rigorous, converges extremely quickly to a blocked string if such an object exists. A bisection method then allows us to obtain the critical driving force \(f_c \), and the critical string. We stress again that, by construction, a blocked string is never passed.

We have run this algorithm on a large number of samples with \(L = M \). Sample sizes varied from \(L = 8 \) to \(L = 2048 \). We compute the mean-square elongation \(W^2(L) \) of a critical string \(h^c \) as

\[
W^2(L) = \langle (h' - h)^2 \rangle
\]

(4)

In Eq. (4), \(\langle h' \rangle = 1/L \sum_i h'_i \), while the overbar stands for an average over the disorder. Our data extrapolate very well and a mean-square analysis including the data from \(L = L_{\text{min}} = 16 \) up to \(L = 2048 \) yields \(\zeta = 0.388 \pm 0.002 \). In the inset of the figure, we show that this mean-square analysis does not systematically depend on \(L_{\text{min}} \), the smallest sample size included in our fit, for sizes larger than \(L_{\text{min}} = 8 \) (as can be seen in Fig. 3, the \(L = 8 \) data are too low).

We believe that the linear scaling \((L,M) \rightarrow (\alpha L, \alpha M) \) [22] is the correct way to approach the thermodynamic limit in this system, for which \(\zeta < 1 \). This has also been assumed in all previous work on this and related systems [16,19,20]. We have explicitly checked that the result for the roughness exponent does not depend on the ratio \(L/M \), as is evident [22]. More importantly, one should expect identical results even for scalings \(M \approx L^z \) for \(\zeta' > \zeta \), as the critical line only correlates sites on a scale \(L^z \). This is indeed what we find.

As an example, we show in Fig. 3 data for a scaling \(M = L^{1/2} \). For these systems, the critical force is smaller and the extension of the critical line is smaller, but the roughness exponent is unchanged, lending further credit to our value of the roughness exponent, and to the tight error bar. Too small values of \(M \) cannot reasonably be studied on a finite system, because the critical line may then wind around the periodic box, introducing spurious effects, which are difficult to include into a finite-size analysis. It is for this reason that we have not studied values of \(\zeta' \) very close, or identical to \(\zeta \).

In conclusion, we have obtained the roughness exponent for long-range elastic strings by a numerical procedure which respects the analytic structure in the problem (no-passing theorem) and allows to obtain very high precision. Our approach can certainly be extended to other problems, and we would in particular be interested in simulation methods which allowed to study, e.g., the KPZ equation [24] directly in the continuum. This is most important, as it has been shown that the effect of discretizations can be very difficult to control [25].

The large difference of the result with the experimental value shows that the theoretical model of these processes will certainly have to be modified in an essential way. One possibility is that velocity-dependent terms have to be taken into account. This appears reasonable, as large local velocities have been observed in the experiments.

The authors would like to thank P. Le Doussal, S. Moulinet, and E. Rolley for very helpful discussions.