Optimal Detection of Rotations about Unknown Axes by Coherent and Anticoherent States – Archive ouverte HAL

John MartinStefan WeigertOlivier Giraud 1

John Martin, Stefan Weigert, Olivier Giraud. Optimal Detection of Rotations about Unknown Axes by Coherent and Anticoherent States. Quantum, Verein, 2020. ⟨hal-02881098⟩

Coherent and anticoherent states of spin systems up to spin j=2 are known to be optimal in order to detect rotations by a known angle but unknown rotation axis. These optimal quantum rotosensors are characterized by minimal fidelity, given by the overlap of a state before and after a rotation, averaged over all directions in space. We calculate a closed-form expression for the average fidelity in terms of anticoherent measures, valid for arbitrary values of the quantum number j. We identify optimal rotosensors (i) for arbitrary rotation angles in the case of spin quantum numbers up to j=7/2 and (ii) for small rotation angles in the case of spin quantum numbers up to j=5. The closed-form expression we derive allows us to explain the central role of anticoherence measures in the problem of optimal detection of rotation angles for arbitrary values of j.

  • 1. LPTMS – Laboratoire de Physique Théorique et Modèles Statistiques

Laisser un commentaire

Retour en haut