Semiclassical Density Functional Theory: Strutinsky Energy Corrections in Quantum Dots

Denis Ullmo 1, Tatsuro Nagano 2, Steven Tomsovic 2, Harold U. Baranger 3

Physical Review B 63 (2001) 125339-1-13

We develop a semiclassical density functional theory in the context of quantum dots. Coulomb blockade conductance oscillations have been measured in several experiments using nanostructured quantum dots. The statistical properties of these oscillations remain puzzling, however, particularly the statistics of spacings between conductance peaks. To explore the role that residual interactions may play in the spacing statistics, we consider many-body systems which include electron-electron interactions through an explicit density functional. First, we develop an approximate series expansion for obtaining the ground state using the idea of the Strutinsky shell correction method. Next, we relate the second-order semiclassical corrections to the screened Coulomb potential. Finally, we investigate the validity of the approximation method by numerical calculation of a one-dimensional model system, and show the relative magnitudes of the successive terms as a function of particle number.

  • 1. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI – Paris Sud
  • 2. Department of Physics,
    Washington State University
  • 3. Duke Physics,
    Duke University
Retour en haut