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Write your answers to this part of the exam on a SEPARATE sheet.
Vous pouvez rédiger en français si vous le souhaitez.

Subject : Weiss oscillations of the magnetoresistivity in a 2DEG

Introduction : Gerhardts, Weiss and von Klitzing analysed the conductivity of a two dimen-
sional electron gas (electrons confined at the interface of two semiconductors) submitted to a
strong magnetic field. They were able to introduce some additional external (scalar) potential
modulated in space in one direction only, V (x) = V0 cos(2πx/a). The aim of the problem is to
study the effect of V (x) on the longitudinal conductivity.

The Hamiltonian describing the dynamics of one electron moving in the plane xOy is

H0 =
1

2
m∗~v

2 + V (x) =

(
~p− e ~A(~r)

)2
2m∗

+ V (x) (1)

where ~v = (vx, vy) is the velocity operator and ~A = (0, B x, 0) describes a magnetic field per-
pendicular to the plane. m∗ = 0.067me is the effective mass in AsGa (me ' 10−30 kg).

We denote by {εα, |ϕα 〉} the spectrum of H0.

A. Conductivity.– The conductivity tensor characterizes the response of the spatially averaged
current density ~j to an external uniform time dependent electric field :

B

Lx

Ly
−e

〈ji(t)〉~E =
∑
j

∫
dt′ σij(t− t′) Ej(t′) +O(E2) . (2)

The current density operator for one electron is ~j = e
Surf~v, where Surf = LxLy is the surface of

the plane. The perturbation is chosen under the form Hpert(t) = −e ~E(t) · ~r.

1. Express the conductivity tensor as an equilibrium correlation function (for one electron).

2. Show that the frequency dependent conductivity for the electron gas is given by

σ̃ij(ω)
def
=

∫ +∞

−∞
dt eiωt σij(t) = − i~e2

Surf

∑
α,β

fα − fβ
εα − εβ

(vi)αβ(vj)βα
~ω + εα − εβ + i 0+

, (3)

where fα ≡ f(εα) is the Fermi function.

Hint : use the formula recalled in the appendix.

3. Discuss the role and the origin of the � i 0+ � in the denominator.

4. Zero frequency.– We will consider the zero frequency conductivity σij ≡ σ̃ij(ω = 0) :

σij = − i~e2

Surf

∑
α,β

fα − fβ
εα − εβ

(vi)αβ(vj)βα
εα − εβ + i~/τ

, (4)

where we performed the substitution 0+ −→ ~/τ . What is the physical meaning of τ ?

We admit that the formula is meaningfull for a finite 1/τ .
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B. Conductivity of the Landau problem (case V (x) = 0).

The Landau problem.– The one body Hamiltonian has the explicit form

H0 =
1

2
m∗~v

2 =
1

2m∗
p2x +

1

2
m∗ω

2
c

(
x− py

eB

)2
(5)

where ωc = eB
m∗

> 0 is the cyclotron pulsation. Translation invariance in the y direction allows to

write the eigenstates as ϕ(x, y) = f(x) eiky. We obtain that f(x) is the eigenstate for a 1D harmonic
oscillator centered around xc = ~k/eB. Denoting by φn(x) the well-known eigenfunctions of the
harmonic oscillator (Gaussian×Hermite polynomial), we find that the eigenstates of H0 are

ϕn,xc
(x, y) = φn(x− xc)

eixcy/`
2
B√

Ly

for an energy εn = ~ωc

(
n+

1

2

)
, n ∈ N . (6)

`B =
√

~/(eB) is the magnetic length setting the typical width of the narrow function φn(x).

The quantum number xc replaces the wavevector k. Imposing periodic boundary condition in the

y direction, we obtain that xc is quantised as xc = 2mπ`2B/Ly, with m ∈ N. The spectrum of the

one particle Hamiltonian is similar to that of a harmonic oscillator (reflecting the existence of the

cyclotron orbits) with macroscopically degenerate Landau levels (because εn is independent on

quantum number xc) : degeneracy of levels is dLL = LxLy/(2π`
2
B), which follows from xc ∈ [0, Lx].

Matrix elements of ~v are deduced from standard properties of the 1D harmonic oscillator

〈ϕn,xc |vx|ϕm,x′c 〉 = −i δxc,x′c

√
~ωc
2m∗

(√
n+ 1 δm,n+1 −

√
n δm,n−1

)
(7)

〈ϕn,xc |vy|ϕm,x′c 〉 = −δxc,x′c

√
~ωc
2m∗

(√
n+ 1 δm,n+1 +

√
n δm,n−1

)
(8)

1. Compute explicitly the longitudinal (zero frequency) conductivity σxx = σyy from Eq. (4).

Express the result in terms of the Drude conductivity σ0 = nee2τ
m∗

, where ne = N/Surf is
the electronic density, and a dimensionless function of ωcτ . Plot neatly σyy as a function
of the magnetic field and explain physically the behaviour.

Hint : the filling factor (number of filled Landau levels) may be written as N/dLL =
neh/(eB) =

∑∞
n=1 n

[
f(εn−1)− f(εn)

]
2. One could compute the Hall conductivity along the same lines : one obtains σxy = −σyx =
σ0 ωcτ/

[
1 + (ωcτ)2

]
. Deduce the resistivity tensor ρ = σ−1.

C. Effect of the oscillating potential V (x).– We now consider the experimental situation
described by the Hamiltonian (1) where V (x) = V0 cos(2πx/a).

1. If the modulation occurs on large scale, a� `B, justify that (6) are still eigenstates of the
Hamiltonian, with eigenvalues now depending on the quantum number xc as

εn,xc ' ~ωc
(
n+

1

2

)
+ V (xc) . (9)

2. Show that the speed operator in the y direction now aquires some non zero diagonal matrix
element, given by the Feynman-Hellmann theorem :

〈ϕn,xc |vy|ϕn,x′c 〉 = δxc,x′c
1

m∗ωc

∂εn,xc
∂xc

. (10)

Hint : write vy = ωc(xc − x).
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In the expression of the conductivity (4), considering separatly the diagonal terms
∑

α=β and
non diagonal term

∑
α 6=β [the indices designate each a pair of quantum numbers α ≡ (n, xc)],

leads to the conclusion that the longitudinal conductivity receives an additional contribution
σyy −→ σyy + ∆σyy due to the introduction of the oscillating potential :

∆σyy =
e2τ

Surf

∑
n, xc

−f ′(εn,xc) |〈ϕn,xc |vy|ϕn,xc 〉|
2 (11)

3. Is the conductivity σxx affected by the presence of V (x) ? Justify your answer.

4. Bonus : Assuming that ~ωc > V0, show that the zero temperature result reads

∆σyy =
e2

h

2τ`2B
a ~
|V ′(Xn)| where V (Xn) = εF − ~ωc(n+ 1/2) . (12)

Hint :
∑

xc
−→ Ly

2π`2B

∫ Lx
0 dxc

5. The expression (12) does not allow for a simple analysis of the experiment for two reasons :
(i) one should add several such contributions when ~ωc < V0 (0 < ~ωc < 1.2 meV and
V0 = 0.3 meV) and (ii) thermal effect is not negligible (kBT = 0.19 meV) ; many Landau
levels are filled (εF = 11meV). Recalling that the longitudinal transport involves cyclotron

orbits of energy εF =
~2k2F
2m∗

, i.e. of radius Rc = kF `
2
B, argue that one expects that ∆σyy is

(pseudo) periodic as a function of 1/B. Give the period of these oscillations.

Explain qualitatively the data of Fig. 1 in the low magnetic field domain (B . 0.5 T).
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Figure 1 – Magneto-resistivities ρxx (continuous) and ρyy (dashed) at T = 2.2 K (i.e. kBT =
0.19 meV). Data from : Gerhardts, et al, Phys. Rev. Lett. 62, 1173 (1989).

6. Bonus : What is the origin of the rapid oscillations appearing at larger field (B & 0.4T) ?

+ Appendix :

We recall that the grand canonical average of a commutator of many body operators, sums of
one particle operators, of the form Â =

∑N
i=1 â

(i) and B̂ =
∑N

i=1 b̂
(i), is

〈[Â , B̂]〉 =
∑
α

fα 〈ϕα |
[
â, b̂
]
|ϕα 〉 =

∑
α, β

(fα − fβ) aαβ bβα , (13)

where the sum runs over one particle stationary states. aαβ = 〈ϕα |â|ϕβ 〉 is a matrix element of
the one particle operator and fα = f(εα) denotes the occupancy of the individual eigenstate.

Solutions à l’adresse http://www.lptms.u-psud.fr/christophe_texier/
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Weiss oscillations of the magnetoresistivity in a 2DEG
Solutions

A. Conductivity.

1. With the perturbation of the form Hpert(t) = −e ~E(t) · ~r, we get the conductivity for one
electron as σij(t) = i

~ θH(t)
〈[

e
Surf vi(t) , e rj

]〉
.

2. The conductivity of the gas of N electrons is obtained by doing vi →
∑N

a=1 v
(a)
i and

rj →
∑N

a=1 r
(a)
j in the correlator. Using the formula of the appendix for the grand canonical

average of the commutator, we get

σij(t) =
ie2

~Surf
θH(t) tr {f(H0) [vi(t) , rj ]} (14)

=
ie2

~Surf
θH(t)

∑
α, β

(fα − fβ) (vi)αβ e
i(εα−εβ)t/~ (rj)βα (15)

where the trace, runing in the one electron Hilbert space, has been expanded over the one
electron eigenstates ; fα ≡ f(εα) is the Fermi function.

The last steps are :
(i) Fourier transform

∫
dt e+iωt and use

∫∞
0 dt eiΩt = 1

0+−i Ω
, where 0+ is a regulator.

(ii) Make use of ~v = i
~ [H0, ~r ] to relate the matrix elements (rj)βα = i~ (vj)βα/(εα − εβ).

We get (3).

3. The i 0+ is a regulator which shifts the pole away from the real axis of the frequency. It
originates from the heaviside function, i.e. from the causality of the response.

4. The subtitution 0+ −→ ~/τ recalls the physical interpretation of the regulator as an infi-
nitly small damping rate (here this should correspond to the relaxation of the momentum
orientation due to collisions).

The formula (4) will be the starting point of the analysis in the following, assuming that
it is correct to consider a constant damping rate (this is the � constant relaxation rate
approximation �).

B. Conductivity of the Landau problem (case V (x) = 0).

1. The index α labelling the eigenstates is replaced by the quantum numbers (n, xc). Injecting
the matrix element in (4) we get

σyy = − ie2~
Surf

∑
n, xc,m, x′c

fn − fm
εn − εm

δxc,x′c
~ωc
2m∗

(√
n+ 1 δm,n+1 +

√
n δm,n−1

)2
εn − εm + i~/τ

(16)

= − ie2~
Surf

~ωc
2m∗

dLL

( ∞∑
n=0

fn − fn+1

εn − εn+1

n+ 1

εn − εn+1 + i~/τ
+

∞∑
n=1

fn − fn−1

εn − εn−1

n

εn − εn−1 + i~/τ

)

=
ie2~
Surf

~ωc
2m∗

dLL

(
1

−~ωc + i~/τ
+

1

~ωc + i~/τ

)
1

~ωc

∞∑
n=1

n [fn−1 − fn]︸ ︷︷ ︸
=N/dLL=neh/(eB) (filling factor)

(17)

Finally we obtain

σyy = σxx = σ0
1

1 + (ωcτ)2
(18)
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where σ0 = nee2τ
m∗

is the Drude conductivity.

The magnetoconductivity has the form of a Lorentzian as a function of B ∝ ωc. The decay
of the longitudinal conductivity comes from the effect of the Lorentz force which bends
the electronic trajectories.

2. The calculation of the Hall conductivity (not asked) follows the same lines. The product
of matrix element is

σyy = · · ·
(√
n+ 1 δm,n+1 +

√
n δm,n−1

)2 · · ·
replaced by−→ σxy = · · ·

(√
n+ 1 δm,n+1 −

√
n δm,n−1

) (√
n+ 1 δm,n+1 +

√
n δm,n−1

)
· · ·

hence there is now a minus sign :

σxy = · · ·
(
− 1

−~ωc + i~/τ
+

1

~ωc + i~/τ

)
· · · ⇒ σxy = (ωcτ)σyy = σ0

ωcτ

1 + (ωcτ)2

(19)
The inversion of the conductivity tensor reads :

σ = σ0
1

1 + (ωcτ)2

(
1 ωcτ
−ωcτ 1

)
⇒ ρ =

1

σ0

(
1 −ωcτ
ωcτ 1

)
(20)

i.e. explicitly

ρxx = ρyy =
1

σ0
and ρyx = −ρxy =

B

nee
. (21)

C. Effect of the oscillating potential V (x).– The complete Hamiltonian is now

H0 =
1

2m∗
p2
x +

1

2
m∗ω

2
c

(
x− py

eB

)2
+ V (x) . (22)

1. We can still look for eigenstates under the form ϕ(x, y) = f(x) eixcy/`2B .

The low energy states of the quadratic potential (V (x) = 0) are spread over a distance
∼ `B =

√
~/(eB). If the potential V (x) is smooth at this scale (for a � `B), it may be

considered as constant, replaced by its value at the minimum of the quadartic potential
→ V (xc), hence the spectrum of energy

εn,xc ' ~ωc
(
n+

1

2

)
+ V (xc) . (23)

The denegeracy of Landau levels is now lifted.

2. We write

〈ϕn,xc |v̂y|ϕn,xc 〉 = 〈ϕn,xc |ωc(xc − x̂)|ϕn,xc 〉 =
1

m∗ωc
〈ϕn,xc |

∂

∂xc

1

2
m∗ω

2
c (xc − x̂)2|ϕn,xc 〉

We may now introduce the other terms of the Hamiltonian as they do not depend on xc :

1

m∗ωc
〈ϕn,xc |

∂

∂xc

[
1

2
m∗v̂

2
x +

1

2
m∗ω

2
c (xc − x̂)2 + V (x̂)

]
|ϕn,xc 〉 .

The partial derivative may be extracted from the quantum averaging thanks to normali-
sation condition ∂

∂xc
〈ϕn,xc |ϕn,xc 〉 = 0. Finally we obtain the desired relation (application

of the Feynman-Hellmann theorem)

〈ϕn,xc |v̂y|ϕn,xc 〉 =
∂εn,xc
∂xc

=
V ′(xc)

m∗ωc
(24)
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The fact that the Landau band is not flat anymore (degeneracy lifted) is related to the
presence of a current in the y direction.

Note that the current in the other direction is not affected : 〈ϕn,xc |v̂x|ϕn,xc 〉 = 0 (it follows
from the effective confinment by the quadratic potential in the x direction).

3. Off-diagonal matrix elements of the velocity operator are not changed by the introduction
of the smooth V (x).

Hence the non vanishing diagonal matrix elements 〈ϕn,xc |v̂y|ϕn,xc 〉 brings an additional
contribution, σyy −→ σyy + ∆σyy, to the longitundinal conductivity (4) :

∆σyy =
e2τ

Surf

∑
α

−f ′(εα) |(vy)αα|2 (25)

σxx is not changed by the introduction of V (x) since (vx)αα = 0.

4. We analyse the conductivity at T = 0. We assume ~ωc > V0 for simplicity, which means
that at most one oscillating Landau band may cross the Fermi level εF (Fig. 2).
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Figure 2 – Landau bands.

We can write

∆σyy =
e2τ

LxLy

Ly
2π`2B

∫ Lx

0
dxc

∑
n

δ(εF − εn,xc)
∣∣∣∣V ′(xc)m∗ωc

∣∣∣∣2 (26)

Using the periodicity of the potential :
∫ Lx

0 dxc −→ Lx
a/2

∫ a/2
0 and that δ(εF − εn,xc) =

δ(xc −Xn)/|V ′(Xn)|, we obtain (12).

We may be more explicit by using the expression of the cosine potential. We obtain finally

∆σyy =
2e2

~
`2B
a2

∞∑
n=0

τ
√
V 2

0 − (εF − ~ωc(n+ 1/2))2

~
(27)

where we have reintroduced the sum over Landau bands in order to account for the case
where several bands cross the Fermi level (when ~ωc < V0). It is understood that the
contribution is zero when the argument of the square root is negative.

Assuming that this correction remains small compare to σij for V (x), we obtain that the
longitunial resistivity are

∆ρxx '
∆σyy

σ2
xx + σ2

xy

and ∆ρyy = 0 (28)

In the experiment of Weiss et al, the parameters are :
• εF = 11 meV
• 0 < B < 0.8 T, i.e. 0 < ~ωc < 1.2 meV
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• V0 = 0.3 meV
• T = 2.2 K i.e. kBT = 0.19 meV
• ~/τ = 0.013 meV

If we plot (28) with the T = 0 expression (27), we obtain the Fig. 3 (the range corresponds
to 0 < B < 0.8 T).
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Figure 3 – Weiss oscillations at T = 0 K.

For a finite temperature, all the rapid oscillations are smoothed and only the smooth
envelope remains.

5. The form of the smooth envelope can be understood by a semiclassical argument : the
transport properties are controlled by cyclotron orbits. The electron of energy εF (lon-
gitudinal conductivity is a Fermi surface property) has a circular trajectory of radius

Rc =

√
2εF /m∗
ωc

= `2BkF .

The periodic potential V (x) is equivalent to a periodic electric field ~E = −~uxV ′(x)/e.

If the radius is commensurate with the period, 2nRc = a, the electron feels an electric
field with the same sign at the left and the right of the orbit, what induces a drift in the
y direction, hence the anisotropy in the transport properties. The period is

∆(1/B) ∼ e a

~kF
(29)

On the experimental data (Fig. 1), we can see that, in the low field part of the graph
(B . 0.4 T) the resistivity ρxx oscillates while ρyy is flat. These oscillations becomes
slower as B increases. This is consistent with our analysis.

6. The rapid oscillations appearing at larger magnetic field (B & 0.4 T) are Shubnikov-de
Haas oscillations.
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...
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hω
c

Figure 4 – Landau spectrum (density of states) without and with disorder.

The expected density of states (DoS) of a disordered 2DEG is represented on Fig. 4. The
oscillations of the DoS (i.e. the quantisation of energy) are responsible for oscillations of
thermodynamic quantities (like the de Haas-van Alphen effect for the magnetisation).
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Concerning the transport properties : the constant relaxation rate approximation (0+ →
~/τ) has led to the semi-classical (Drude-Sommerfeld) expression for ρxx = 1/σ0 (with no
oscillation). A more reallistic treatment of scattering processes on the disordered potential
(by self consistent Born approximation for example) shows that the conductivity presents
oscillations as a function of 1/B similar to oscillations of thermodynamic quantities (remind
that the conductivity is proportional to the DoS by the Einstein relation σxx = e2ρ(εF )D).
We emphasize that, contrarily to the case of thermodynamic properties, the conductivity
oscillations relies crucially on the presence of disorder : it localises a fraction of eigenstates
which do not participate to transport. The period of SdH oscillations is

∆(1/B) =
2e

~k2
F

=
2e

neh
(30)

Remark : the study of SdH oscillations is a common experimental tool to determine the
density of charge carriers at low temperature.
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Figure 5 – From D. Weiss, � Magnetoquantum oscillations in a lateral superlattice � (1990).

The two types of oscillations (Weiss oscillations and SdH oscillations) do not have the same
period (besides, the Weiss oscillations signals anisotropic transport). They have different
temperature dependences : the SdH oscillations rapidly disappear due to thermal broade-
ning whereas the Weiss oscillations are weakly dependent on temperature (see Fig. 5).

+ To learn more :
• Experiment analysed here was reported in : R. R. Gerhardts, D. Weiss and K. von Klitzing,
Novel magnetoresistance oscillations in a periodically modulated two-dimensional electron gas,
Phys. Rev. Lett. 62, 1173 (1989).
• A semiclassical theory, which is more appropriate to describe the experiment, was developed in :
C. W. J. Beenakker, Guiding-center-drift resonance in a periodically modulated two-dimensional
electron gas, Phys. Rev. Lett. 62, 2020 (1989) ; R. R. Gerhardts, Quasiclassical calculation
of magnetoresistance oscillations of a 2D electron gas in an anharmonic lateral superlattice
potential, Phys. Rev. B 45, 3449 (1989).
• A little review which may be found on the internet is : D. Weiss, �Magnetoquantum oscillations
in a lateral superlattice �, pp. 133–150, in Electronic properties of multilayers and low-dimensional
semiconductors structures, Edited by J. M. Chamberlain et al., Plenum Press, New York, 1990.

• The detailed analysis of the Landau problem can by found in : L. Landau & E. Lifchitz,
volume 3 or my book, C. Texier, � Mécanique quantique �, chapter 16, 2nd edition, Dunod
(2015). Discussion of the Feynman-Hellmann theorem can be found in my book as well.
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