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Advanced Statistical Physics – CORRECTION of the january 2023 Exam

1 Swimming bacteria

We study here the ”Langevin” equation

dx(t)

dt
= F (x(t)) + v0 σ(t) (1)

where the noise is a random telegraph process σ(t) = ±1 for rate λ.

1/ Diffusion constant.— We analyse the motion in the absence of the drift (set F (x) = 0) :

⟨x(t)2⟩ = v20

∫ t

0
dt1

∫ t

0
dt2 ⟨σ(t1)σ(t2)⟩ ≈ v20 t

∫ +∞

−∞
d(t1 − t2)

=e−2λ|t1−t2|︷ ︸︸ ︷
⟨σ(t1)σ(t2)⟩ =

v20
λ

t ≡ 2D t

(2)
hence

D = v20/(2λ) . (3)

2/ For σ(t) = +1 we have dx
dt = F (x)+ v0 corresponding to ∂tP+ = −∂x [(F (x) + v0)P+]. With

rate λ, the noise makes a transition σ(t) = +1 → −1, hence the term −λP+. The last term
+λP− corresponds to the contribution of a transition σ(t) = −1 → +1.

3/ PDE for P = P+ + P− and Q = P+ − P− are

∂tP = −∂x [F (x)P ]− v0∂xQ (4)

∂tQ = −∂x [F (x)Q]− v0∂xP − 2λQ (5)

4/ Equation ∂tP (x; t) = −∂xJ(x; t) is a conservation equation involving the probability current
J(x; t) through x at time t. Obviously, from previous PDE, we have

J(x; t) = F (x)P (x; t) + v0Q(x; t) (6)

The first term is the usual drift current (drift×probability density). Hence the second term
should be interpreted as a diffusion current.

5/ Stationary solution corresponds to ∂tP = 0 and ∂tQ = 0, hence J(x; t) = J .

Equilibrium solution corresponds to J = 0, hence Q(x) = −F (x)P (x)/v0 in this case. In-
jecting this into the PDE for Q we get 0 = ∂x

[
F (x)2P (x)

]
/v0−v0∂xP (x)+2λF (x)P (x)/v0,

i.e.
∂x

[
(v20 − F (x)2)P (x)

]
= 2λF (x)P (x) (7)

The RTP can only explore regions where |F (x)| < v0 : this is clear from the Langevin
equation. Consider σ(t) = +1, i.e. dx

dt = F (x) + v0: x(t) grows until F (x) + v0 vanishes.
Then, x(t) can decrease only when σ(t) = +1 → −1.

Solution of the differential equation

∂x
[
(v20 − F (x)2)P (x)

]
=

2λF (x)

v20 − F (x)2
(v20 − F (x)2)P (x) (8)
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is (v20 − F (x)2)P (x) = N exp

{
2λ

∫ x

0

dy F (y)

v20 − F (y)2

}
for |F (x)| < v0

P (x) = 0 for |F (x)| > v0

(9)

We can rewrite the equilibrium solution as

Peq(x) =
N

v20 − F (x)2
e−U(x)/D where U(x) def

= −v20

∫ x

0

dy F (y)

v20 − F (y)2
(10)

is an effective potential and D = v20/2λ the diffusion constant identified above.

6/ Brownian limit. The correlator of the ”Langevin force” ξ(t) = v0 σ(t) is〈
ξ(t)ξ(t′)

〉
= v20e

−2λ|t−t′| =
v20
λ

λe−2λ|t−t′|︸ ︷︷ ︸
−→
λ→∞

δ(t−t′)

(11)

The Gaussian white noise limit is reached for

λ → ∞ and v0 → ∞ with D = v20/2λ fixed. (12)

In this case the effective potential coincides with the potential

U(x) = −v20

∫ x

0

dy F (y)

v20 − F (y)2
−→ −

∫ x

0
dy F (y) = V (x) (13)

Hence the equilibrium distribution is Peq(x) ∝ exp[−V (x)/D], as expected for a diffusion in
a potential V (x).

(see discussion below).

7/ Harmonic confinment.— For a linear force F (x) = −k x we get

U(x) = − v20
2k

ln
(
1− (kx/v0)

2
)

(14)

hence

Peq(x) ∝

[
1−

(
kx

v0

)2
]−1+λ/k

for x ∈ [−v0/k,+v0/k] . (15)
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The ”Brownian limit” is

Peq(x) ∝
[
1− k

λ

kx2

2D

]−1+λ/k

−→
λ→∞

exp−kx2/2D (16)

We recover the expected Gaussian distribution, with support [−v0/k,+v0/k] → R.
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8/ Active/passive transition.— The above equilibrium distribution Peq(x) exhibits a tran-
sition for λ/k = 1 : from a distribution maximum at x = 0 and vanishig at the boundaries
±v0/k for λ > k (high rate/weak confinment), like for in the Brownian limit, to a distribution
diverging at the boundaries ±v0/k for λ < k (low rate/strong confinment).

The accumulation at the boundaries for λ < k is understood as follows : consider the
rate λ → 0 and start with σ(t) = +1, hence the particle reaches the boundary where
F (x)+ v0 = −kx+ v0 = 0 where it gets stuck, until σ(t) = +1 → −1, then it goes backward
to the boundary where F (x)− v0 = −kx− v0 = 0, etc. This explains which the RTP spends
most of the time at the boundaries when λ → 0. This occurs when the characteristic time
related to the deterministic dynamics (drift) is short compare to the persistent time τ = 1/λ.

9/ Confinment with soft walls.— We consider confinment with soft walls in a region [0, L] :
V (x) = −

∫ x
0 dF (y) = k

2x
2 for x < 0, V (x) = 0 for x ∈ [0, L] and V (x) = k

2 (x − L)2 for
x > L. Clearly the equilibrium solution is now

Peq(x) ∝



[
1−

(
kx
v0

)2
]−1+λ/k

for x ∈ [−v0/k, 0]

cste for x ∈ [0, L][
1−

(
k(x−L)

v0

)2
]−1+λ/k

for x ∈ [L,L+ v0/k]

(17)

For λ < k, the density presents divergences at the boundaries. The experimental data
precisely exhibits the accumulation of bacteria C. crescentus at the boundary.

Discussion and additional information

The mathematical point of view : persistent random walk.— In the problem, we have
studied the persistent random walk on R in the presence of a drift term F (x).

For F (x) = 0, the position is incremented by ±v0τi after each time step τi, where τi is
exponentially distributed (with p(τ) = λe−λτ ). The walker at time t has explored the region
[−v0t,+v0t] (the diffusion presents fronts). In the large time limit, it eventually coincides with
the usual diffusion as the ballistic fronts are much faster than the typical region ∼

√
Dt. This

is the result of the central limit theorem. The solution of the master equation is known :

P (x; t) =
1

2
e−λt

[
δ(x− v0t) + δ(x+ v0t) +

λ

v0
I0

(
λ
√
t2 − (x/v0)2

)
(18)

+
λt√

(v0t)2 − x2
I1

(
λ
√
t2 − (x/v0)2

)]
for x ∈ [−v0t, v0t], and zero outside. Iν(x) is the modified Bessel function of first kind. See for
example the paper : H. G. Othmer, S. R. Dunkar & W. Alt, Models of dispersal in biological
systems, J. Math. Bio. 26, 263–298 (1988).
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• For a finite confining drift F (x), there is a new characteristic time scale to be compared with
the typical time between jumps, τ = 1/λ. If the jumps can be considered ”small”, i.e. F (x)
is almost constant on scale v0/λ, this is similar to a continuous diffusion in the presence of the
drift F (x).

• However, if the jumps ∼ v0/λ are big for F (x), the distribution is very different from the one
obtained for a continuous diffusion, as we have seen.

The physical point of view : passive versus active.— The general form of a Langevin
equation is

dx(t)

dt
= v(t) (19)

m
dv(t)

dt
= −

∫ ∞

0
dτ γ(τ) v(t− τ) + F (x(t)) + ξ(t) (20)

where the damping is in general described by an integral term (dissipation is only effective after
some finite time). The damping function γ(τ) depends on the microscopic details of the model
(fluctuations in the environment). The fluctuation-dissipation theorem, relying on the existence
of a thermal equilibrium for the particle and the fluid, implies that the correlator of the noise
C(τ) = ⟨ξ(t)ξ(t+ τ)⟩ is related to the damping function by C(τ) = kBT γ(τ) (for τ > 0). See
§ 4.3 of the lecture notes.

A narrow function γ(τ) → γ δ(τ) corresponds to a local damping term (case studied in the
lectures), which describes the large time scales. In the overdamped limit, this leads to the

Langevin equation dx(t)
dt = 1

γ

[
F (x(t)) + ξ(t)

]
where ξ(t) is a white noise.

Let us come back to the two situations encountered in the problem :

• When fluctuations (noise) are due to the fluid (passive matter), the Einstein-Stokes relation
D = kBT/γ holds (in the problem, the friction coefficient was set to unity, γ = 1) and the
equilibrium distribution Peq(x) ∝ exp[−V (x)/D] corresponds to the Gibbs equilibrium. Here,
this form is obtained for a δ-correlated noise, which is consistent with the local damping term
in the Langevin equation, which is implicity chosen to get (1).

• On the contrary, if the noise is characterized by a finite persistent time and the damping is
kept local in time, FDT is violated, meaning that the ”Langevin” equation should describe a
non-equilibrium situation. This corresponds to active matter, described here by the RPT model,
where the motion is due to energy injected by the particle (the flagellar motors). This leads to
the strongly non Gibbsian equilibrium distribution (10).

Final remark : several models of active matter exist : the run-and-tumble model discussed
here, the active Brownian motion model (velocity with fixed modulus and orientation performing
a BM), active Ornstein-Uhlenbeck process, etc.
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2 The O(N) model

Consider a system characterized by a real vectorial order parameter with N components de-
scribed by the Landau-Ginzburg functional

F [ϕ⃗(x)] =

∫
ddx

[
g

2

N∑
i=1

(
∇⃗ϕi

)2
+

a

2
ϕ⃗ 2 +

b

4

(
ϕ⃗ 2

)2 − ϕ⃗ · h⃗

]
(21)

1/ Principles of the Landau-Ginzburg approach :

• phenomenological approach

• propose a functional F [ϕ⃗(x)] controlling the incomplete partition function Z[ϕ⃗(x)] ∼
e−βF [ϕ⃗(x)] for constrained configuration.

principles : assume F [ϕ⃗(x)] analytic in the field, locality, existence of a minimum and use
symmetry of the problem

• find the optimal field configuration minimizing F [ϕ⃗(x)]

2/ Field equation is

δF

δϕi(x)
= 0 ⇒ −g∆ϕi(x) + aϕi(x) + bϕ⃗(x)2 ϕi(x) = hi(x) ∀i = 1, · · · , N . (22)

3/ Homogeneous solution (for h⃗ = 0) : We have to solve aϕi + bϕ⃗2 ϕi = 0. Two cases :

(i) a > 0, then ϕ⃗ = 0.

(ii) a < 0, then ||ϕ⃗|| =
√

−a/b. All directions are possible, hence the system chooses one
direction (spontaneous symmetry breaking).

For the O(N) model, the symmetry breaking scheme is : SO(N) → SO(N − 1).

4/ We now consider small spatial modulations around the homogeneous solution : ϕ⃗(x) =
e⃗1

[
ϕ0 + φ∥(x)

]
+ φ⃗⊥(x) with φ⃗⊥ = (0, φ2, · · · , φN ). We linearize the field equation by

assuming that φ∥ and φ⊥ are much smaller than ϕ0.

Note that
ϕ⃗(x)2 = (ϕ0 + φ∥)

2 + φ⃗2
⊥ ≃ ϕ2

0 + 2ϕ0φ∥ (23)

at linear order. Hence linearized field equation is

−g∆(e⃗1φ∥ + φ⃗⊥) + 2ϕ2
0e⃗1φ∥ ≃ h⃗ (24)

Projection in the two directions gives

−g∆φ∥ + 2ϕ2
0φ∥ ≃ h∥ (25)

−g∆φ⃗⊥ ≃ h⃗⊥ (26)

In the first equation we identify the correlation length ξ such that

1/ξ2 = 2ϕ2
0/g i.e. ξ =

√
gb/(−2a) ∝ 1/

√
Tc − T (27)

We can rewrite (
−∆+

1

ξ2

)
φ∥ ≃

1

g
h∥ (28)

−∆φ⃗⊥ ≃ 1

g
h⃗⊥ (29)

We can say that ξ∥ = ξ is finite while ξ⊥ = ∞.
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5/ The equation with the conjugated field is linear, hence the general solution is a convolution
of the form

φi(x) ≃
∫

ddx′
∑
j

χij(x− x′)hj(x
′) (30)

where χij(x) is a response function.

6/ The two equations for φ∥ and φ⃗⊥ are uncoupled, hence we can introduce χ∥(x) for the

equation for φ∥ and χ⊥
ij(x) for the equation for φ⃗⊥. They obey(

−∆+
1

ξ2

)
χ∥(x) ≃ 1

g
δ(x) (31)

−∆χ⊥
ij(x) ≃

1

g
δijδ(x) (32)

i.e.

χ̃∥(q) =
1/g

q2 + ξ−2
and χ̃⊥

ij(q) = δij
1/g

q2
(33)

The spatial structures are

χ∥(x) ∼ e−||x||/ξ at large distance (34)

χ⊥
ij(x) ∼ ||x||−d+2 (35)

Parallel response function decays exponentially, however response perpendicular to ϕ0e⃗1 is
long range.

7/ Thanks to the fluctuation-dissipation theorem, we can relate the equilibrium correlation
function Cij(x− x′) = ⟨φi(x)φj(x

′)⟩c to the response function

Cij(x) = kBT χij(x) . (36)

Correspondingly correlations
〈
φ∥(x)φ∥(x

′)
〉
c
are short range (decay exponentially over dis-

tance ξ) while ⟨φ⊥,i(x)φ⊥,j(x
′)⟩c are long range (power law).

8/ Goldstone theorem.— In the scalar case studied in the lectures (case N = 1), for T < Tc,
the field is trapped at ϕ(x) ≃ ϕ0 or −ϕ0. Fluctuations are mainly small fluctuations around
the minimum because overcoming the free energy barrier ∆fL = fL(0) − fL(ϕ0) is a huge
cost.

Here, for the vectorial model, there is a continuum of minima for ||ϕ⃗|| = ϕ0. A rotation of
the optimal solution does not cost energy, hence fluctuations perpendicular to the chosen
direction (ϕ0e⃗1 above) are made easy. This is a general situation when the broken symmetry
is continous. The Goldstone theorem states that the spontaneous breaking of a continuous
symmetry is accompagnied by the existence of massless modes, the so-called ”Goldstone
modes”, (with long range correlations). Here the SSB scheme is SO(N) →SO(N − 1),
correspondingly there are N − 1 Goldstone modes is the ordered phase.
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