
Master 2 iCFP - Soft Matter & Physics for biology

Advanced Statistical Physics – Exam
Friday 6 january 2023

Duration : 3h30min.

Lecture notes are NOT allowed.

! Write Exercices 1 & 2 on separate sheets (with your name on both!) !

1 Swimming bacteria

Flagellar bacteria swim in water, propelled by their rotating helical filaments powered by flagellar
motors. Bacteria perform straight-line motion at almost constant velocity v0, ”runs”, punctuated
by sudden randomizations in direction, ”tumbles”, occuring randomly with rate λ. This is the
”run and tumble particle” (RTP) model (see figure 1), also called the ”persistent random walk”
model, where τ = 1/λ is the persistent time. The RTP model describes ”active matter” as the
motion originates from the molecular motors, and not from the thermal fluctuations in the fluid
(corresponding to ”passive matter”).

Figure 1: Left : A bacteria Escherichia coli with its flagellas (size of the bacteria is ∼ 2 µm).
Right : The RTP model: a bacteria moves forward at constant velocity v0, changing the direction
of its motion at random times.

Run-and-tumble particle (RTP) in one dimension.— For simplicity, we study here the
one-dimensional version of the RTP model : we denote by x(t) the position of the particle,
submitted to a conservative force F (x) and a ”Langevin” force (noise) of the form ξ(t) = v0 σ(t)
where σ(t) = ±1 is a random telegraph process changing sign randomly with rate λ (Fig. 2) :

dx(t)

dt
= F (x(t)) + v0 σ(t) . (1)
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Figure 2: The noise is a random telegraph process. Plot of its sign σ(t) for rate λ = 1.
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1/ Diffusion constant.— The correlator of the random telegraph process is ⟨σ(t)σ(t′)⟩ =

e−2λ|t−t′|. Deduce the diffusion constant D defined as D = limt→∞
⟨x(t)2⟩

2t for the free particle
(force F (x) = 0).

2/ We introduce P±(x; t) the probability density for the particle to be at x, given that σ(t) = ±1.
Justify (in few words) that P+(x; t) and P−(x; t) obey

∂tP+ = −∂x [(F (x) + v0)P+]− λP+ + λP− (2)

∂tP− = −∂x [(F (x)− v0)P−] + λP+ − λP− (3)

3/ We introduce P (x; t) = P+(x; t) + P−(x; t) the probability density for the particle and
Q(x; t) = P+(x; t)− P−(x; t). Derive the partial differential equations (PDE) for P and Q.

4/ Show that the PDE for P can be rewritten under the form ∂tP (x; t) = −∂xJ(x; t). Give the
expression of J(x; t). What is its physical meaning ? Interpret the two terms.

5/ Equilibrium solution : We consider a confining force F (x). Show that the PDE for P
and Q admit the equilibrium solution defined for |F (x)| < v0

Peq(x) =
N

v20 − F (x)2
e−U(x)/D with U(x) def

= −v20

∫ x

0

dy F (y)

v20 − F (y)2
(4)

and Peq(x) = 0 where |F (x)| > v0. D is the diffusion constant and N a normalization.

6/ Brownian limit. The ”Langevin” force is ξ(t) = v0 σ(t). How it is possible to recover
formally the usual Langevin equation for a Gaussian white noise ? Discuss the equilibrium
distribution Peq(x) in this limit.

7/ Harmonic confinment.— We consider a force F (x) = −k x. Derive the corresponding
effective potential U(x) and the equilibrium distribution. Discuss the ”Brownian limit” of
the result.

8/ Active/passive transition.— Show that the equilibrium distribution Peq(x) exhibits a
transition for λ/k = 1 and plot neatly the distribution in the two cases (λ > k and λ < k).
Explain physically the behaviour for λ < k.
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FIG. 3. (a) Z-X plot of over 10 000 measured positions from 699
cell trajectories to visualize near-surface distribution. (b) Histogram
of the distance of 0.5 µm bin size. (c) A comparison between the
measured (solid circle) and simulated (open circle) probability density
(ρ) distributions.

C. Accumulation near a surface

Even though the forward swimming cells only spend a
brief time near the surface, the above trajectories still give
rise to a much higher chance of finding a cell at a closer
distance than farther away from the surface. Over 10 000
measured X-Z position data of 699 trajectories within 5
µm from the surface are plotted in Fig. 3(a). There is a
dense band of cells found within 1 µm from the surface.
The probability density distribution is binned at 0.5 µm, and
the histogram of this distribution as a function of distance
is shown in Fig. 3(b). The count of cells in the first bin
is 4.5 times that in the second one and 9.9 times that
at 5 µm away. Note that the 3D tracking method has a
resolution limit of 0.2 µm in height. In practice, we set
the cell with the smallest ring in a video to be at distance
Z = 0 and relate the distances of other cells to this position.
Because of this restricted choice of the zero position, no
negative positions were recorded. In reality, the calculated
positions of many cells yielded small positive values even if
they might have made contact with the surface. This factor
introduces a systematic error that would bias the results and
underestimate the number of cells in the first bin of the
histogram. Specifically, one notes a dense band of cells at
0.2–0.3 µm from the surface, and the band spreads beyond
the first bin. The factors for this peak position offset from
the zero distance include cell size variation and the fact that
elongated cells can hit the surface with various orientations. In
spite of the underestimate, the result clearly demonstrates that
there is a strong accumulation of cells within 0.5 µm from the
surface.

III. MODELING AND SIMULATION

A. Model

As shown in our previous report, the key premise of our
model is that the combination of collision and rotational Brow-
nian motion gives rise to the accumulation of microswimmers
near a solid surface [10]. When a cell swims toward and
then collides with a solid surface, its motion is redirected
so that it becomes parallel to the surface while it continues to
move in close proximity. Excluding all other effects, the cell
would cruise near the surface indefinitely, assuming constant
propulsion by the rotating flagellum. In reality, a microm-
eter sized bacterium undergoes continuous translational and
rotational Brownian motion. For a fast microswimmer, the
rotational Brownian motion plays a more important role than
the translational one in changing the course of its motion,
by randomly altering its swimming direction. The random
changes in swimming direction allow the bacterium to leave
the surface. Other effects such as long-range hydrodynamic
interaction [9] and lubrication [15] are ignored in this model.

We discuss here specifically why much of the lubrication
effect can be omitted. When a cell swims toward a surface, the
lubrication effect contributes to the normal force that redirects
swimming direction. We will show, however, that this process
is so brief that a detailed description of lubrication effect is
unnecessary in the analysis leading to steady state accumula-
tion. We first estimate the time needed for a swimming cell to
make contact with a surface. The lubrication effect increases
drag for a spherical particle of radius a approaching a surface
head on by a factor of 1/ε at a close distance of εa, where
ε < 1 [15]. Therefore, when the cell swims toward the surface
at an initial speed V0, it slows down to ∼εV0 at the distance εa
due to the lubrication effect. The cell keeps approaching until
it reaches a distance λ where further approach is inhibited by
strong electrostatic repulsion [11] and surface roughness [20].
The distance is typically on the order of nanometers in cell
medium. The time the cell takes to move from a distance a to
this distance λ is a ln(a/λ)/V0. For C. crescentus, a ∼ 500 nm
and V0 ∼ 50 µm/s. The cell only takes ∼0.06 s to reach
a position where the electrostatic repulsion [7] and solid
contact [21] dominate the lubrication. This period is very short
compared to the time scale considered in this paper. Therefore
it is not necessary to fully describe the details of how the
lubrication effect modifies the approaching process. Instead,
we practically refer to this process as collision, during which
the lubrication effect, together with electrostatic repulsion and
solid contact, provides a normal force to stop the approach and
realign the cell orientation.

We also demonstrate that the lubrication torque on a
sphere moving parallel to a surface has little effect on
cell reorientation. Figure 4(a) illustrates a situation when
the spherical cell body is very close to the surface. It has
been shown that a spherical particle tends to roll when
moving parallel to a surface, resulting from a torque caused
by the lubrication effect [15]. This torque is proportional to
the moving speed, $lub = −AlubV , where Alub depends on the
radius of the sphere and the distance from the surface. We
show that this rolling effect can be neglected by the following
two estimates. First, we calculate the additional rotation rate
caused by this effect to the cell body and filament as a complex,
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FIG. 3. (a) Z-X plot of over 10 000 measured positions from 699
cell trajectories to visualize near-surface distribution. (b) Histogram
of the distance of 0.5 µm bin size. (c) A comparison between the
measured (solid circle) and simulated (open circle) probability density
(ρ) distributions.
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lubrication effect modifies the approaching process. Instead,
we practically refer to this process as collision, during which
the lubrication effect, together with electrostatic repulsion and
solid contact, provides a normal force to stop the approach and
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sphere moving parallel to a surface has little effect on
cell reorientation. Figure 4(a) illustrates a situation when
the spherical cell body is very close to the surface. It has
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moving parallel to a surface, resulting from a torque caused
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Figure 3: 10 000 recorded positions of bacteria Caulobacter crescentus close to a surface and
related distribution. From: G. Li et al, Phys. Rev. E 84, 041932 (2011).

9/ Confinment with soft walls.— We now consider bacteria confined in a region [0, L]
with soft walls, i.e. V (x) = −

∫ x
0 dF (y) = k

2x
2 for x < 0, V (x) = 0 for x ∈ [0, L] and

V (x) = k
2 (x − L)2 for x > L. Assuming λ < k, plot the density profile. Comment the

experimental figure 3 (which shows only one boundary, i.e. L → ∞).
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2 The O(N) model

Consider a system characterized by a real vectorial order parameter with N components

ϕ⃗ = (ϕ1, ϕ2, · · · , ϕN ) (5)

A priori the dimension N can differ from the dimension of space d. When the order parameter
depends on space, the system is described by the Landau-Ginzburg functional

F [ϕ⃗(x)] =

∫
ddx

[
g

2

N∑
i=1

(
∇⃗ϕi

)2
+

a

2
ϕ⃗ 2 +

b

4

(
ϕ⃗ 2

)2 − ϕ⃗ · h⃗

]
(6)

with x ∈ Rd, a = ã t where t = (T −Tc)/Tc = t. Also b > 0 and h⃗(x) is the conjugate field. This
model could be a model for the para/ferro transition accounting for the vectorial nature of the
magnetization (for N = d = 3).

1/ Explain the principles of the Landau-Ginzburg approach in few words.

2/ Derive the field equation for the field ϕ⃗(x).

3/ Homogeneous solution (for h⃗ = 0) : assuming that the order parameter is uniform in
space, discuss the solution. Argue that one can choose ϕ⃗unif = ϕ0 e⃗1 and express ϕ0 (discuss
T < Tc and T > Tc). e⃗1 the unit vector in field space.

4/ Linearization for T < Tc : We now consider small spatial modulations around the homo-
geneous solution :

ϕ⃗(x) = e⃗1
[
ϕ0 + φ∥(x)

]
+ φ⃗⊥(x) (7)

with φ⃗⊥ = (0, φ2, · · · , φN ). We consider φ∥ and φ⊥ much smaller than ϕ0. By linearization
of the field equation, deduce an equation for φ∥(x) and an equation for φ⃗⊥(x) [also split the

conjugated field into h∥(x) and h⃗⊥(x)]. Identify the correlation length ξ.

5/ Show that it is possible to write the solution under the form

φi(x) ≃
∫

ddx′
∑
j

χij(x− x′)hj(x
′) (8)

What is the physical meaning of χij(x) ?

6/ Argue that it is possible to introduce χ∥(x) and χ⊥
ij(x). Give their Fourier transforms χ̃∥(q)

and χ̃⊥
ij(q). Without entering into a detailed calculation, compare the spatial structure of

the two functions.

7/ We denote by ⟨· · ·⟩ the thermal averaging with respect to the Gibbs measure e−βF [ϕ⃗] and
⟨XY ⟩c = ⟨XY ⟩−⟨X⟩ ⟨Y ⟩. What can you say about the correlations of the field

〈
φ∥(x)φ∥(x

′)
〉
c

and ⟨φ⊥,i(x)φ⊥,j(x
′)⟩c for h⃗ = 0 ?

8/ Goldstone theorem.— Discuss the difference with the scalar model studied in the lectures
(case N = 1). Can you explain the origin of the difference (you can consider the case N = 2
for simplicity) ?

Solutions will be avalaible at http://lptms.u-psud.fr/christophe_texier/
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