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INTRODUCTION
One striking feature of Lévy flights is that their statistical behavior is dominated by a few rare and very large

events, whose occurrence is thus governed by the tail of the jump distribution. This feature led us to an interesting
property of the probability density function of the walker position far from the absorbing walls [1].

Power-law distributions have many applications in Physics: laser-cooling of cold atoms, random matrices, disor-
dered systems. Recently the asymmetric Lévy flights have found applications in search problems and finance.

1D LÉVY WALKERS
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DEFINITIONS - ONE-DIMENSIONAL LÉVY WALKER
We consider a one-dimensional random walker, in dis-

crete time, moving on a continuous line. Its position x(n)
after n steps evolves according to{

x(0) = 0

x(n) = x(n− 1) + η(n)
(1)

The random jumps variables ηi’s are independent and
identically distributed according to a probability density
function φ(η) displaying asymmetric power law tails:

φ(η) ∼


c

η1+α
, η → +∞ ,

c/γ

|η|1+α
, η → −∞ .

(2)
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SCALING FORM
To study the large n behavior we write the walker

position after n steps in the scaling form

xn = y n1/α . (3)

When n→∞, the fluctuations of the variable y converge
to a PDF which
• is independent of n and of the details of φ(η)
• depends only on α, c and γ.

FREE LÉVY WALKER
We know, from the Central Limit Theorem, that this

PDF corresponds to the skewed α-stable distribution,
R(y), which admits the exact asymptotic expansion :

R(y) ∼


c

y1+α
, y → +∞ ,

c/γ

|y|1+α
, y → −∞ ,

(4)

• α ∈ (0, 2) is the stability index,

• γ ∈ (0,+∞) is a skewness parameter describing
the asymmetry of R(y),

• c > 0 is a scale parameter.

R(y) inherits from the jump distribution φ(η):

• the power law tail ∝ |y|−α−1,

• the amplitudes of the right and the left tails.
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CONSTRAINED LÉVY WALKER
We consider a one-dimensional random walk in presence of an absorbing wall in the negative half line, such that

the walker is constrained to stay positive.

SURVIVAL PROBABILITY
The survival probability, q+(n), is the probability that

the walker is still alive after n steps:

q+(n) = Prob.[x(n) ≥ 0, · · · , x(1) ≥ 0|x(0) = 0] . (5)

For large n, q+(n) decays algebraically with a persistence
exponents θ+ [2]:

q+(n) ∝
n→∞

n−θ+ . (6)

Using a generalized version of the Sparre Andersen the-
orem we obtain the exact results for the persistence ex-
ponents (see also [3]):

θ+ =
1

2
− 1

πα
arctan

(
β tan

(πα
2

))
, α 6= 1 . (7)
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PROBABILITY DENSITY FUNCTION
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R(y) and R+(y) both decay as y−α−1 when y becomes
large, but with different amplitudes [4]:
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Here we compute the exact value of the amplitude c+
and show that it is related to the corresponding persis-
tence exponent θ+ given in (7):

R+(y) ∼
+∞

c+
y1+α

, c+ =
c

1− θ+
. (8)

This is in agreement with a previous result, c+ = 2 c,
valid only for symmetric Lévy flights [5–7].

2D CONSTRAINED LÉVY WALKER
We now consider a two-dimensional walker con-

strained to stay in a semi-bounded domain D.
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In this case the survival probability has also an algebraic
decay with a persistence exponent θD.

Far from the boundaries the PDF, Rd,D, of the rescaled
variable ~y, displays the same algebraic decay as the PDF
Rd, in the absence of boundaries. We then generalised
the result (8):

Rd,D(~y)

Rd(~y)
−→

d(~y,∂D)→∞

1

1− θD
, if θD < 1 . (9)

Every result of this poster is confirmed by careful nu-
merical simulations.
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