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INTRODUCTION
In the context of reactor physics, one is often called to relate the physical properties of a medium to the statistics of the random trajectories of the neutrons flowing through

it. To this aim, we focus on the Cauchy’s formula, which establishes a link between the average length of the neutron paths (proportional to the medium opacity) and the
volume-to-surface ratio of the traversed medium. Originally established for random straight lines, this formula was recently shown to apply also to Pearson random flights [1–3],
and to branching exponential flights [4, 5]. In this work, thanks to a Feynman-Kac approach [4], we consider some extensions of such results for neutrons undergoing scattering,
absorption and branching, in heterogeneous and anisotropic media. A validation of the proposed formulas via Monte Carlo simulations is discussed.

The simplicity of some of these opacity formulas might provide a useful tool for the validation of a Monte Carlo code.

MEDIUM AND HYPOTHESIS

Properties of the medium :
• heterogeneous,

cross section σ(~r)
probabilities pk(~r);

• anisotropic:
scattering kernel Cscat(~ω → ~ω′);
isotropic fission kernel C(~ω → ~ω′) = cst.

Hypotheses:
• the velocity v of the neutron is assumed constant

along the trajectory;
• media have vacuum boundary conditions.

BRANCHING EXPONENTIAL FLIGHTS
The paths performed by neutrons are random in nature, and can be modelled by resorting to a stochastic process:

the branching exponential flights.
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At each time step dt, the neutron :
• collides with a nucleus of the medium, with a probability σ v dt

• has no interaction with the medium and goes straight ahead, with a probabil-
ity (1− σ v dt)

When neutrons interact with the medium, they
• are scattered on a nucleus with a probability pscat and a kernel Cscat

• are captured by a nucleus with pcapt and then k,k≥0 neutrons are emitted by
the nucleus with a probability pk in a direction given by C.

INTERESTING QUANTITIES
The opacity Ω is proportional to the average length

travelled in the volume V by the particles that are in-
jected uniformly at its surface S : 〈L〉S .

Two other observables are also relevant,
• total number of occured collisions in V,
• the survival probability St, which is the probabil-

ity that at time t at least one particle is still in V .

BACKWARD EQUATION FOR THE m-TH MOMENT OF THE TRACE Lm

We followed the lines of the Feynman-Kac formalism and found the backward equation for Lm(~r0, ~ω0, t):
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v

∂Lm

∂t
= L∗Lm +mV (~r0, ~ω0)Lm−1︸ ︷︷ ︸

past history

+σ(~r0) pcap(~r0)
m∑
j=2

νj(~r0)Bm,j [C
∗{Li}]︸ ︷︷ ︸

purely branching term

, (1)

where L∗ = ~ω0.~∇~r0 − σ(~r0)︸ ︷︷ ︸
streaming

+σ(~r0) pcap(~r0) ν1(~r0)C∗{.}︸ ︷︷ ︸
emission after capture

+σ(~r0) pscat(~r0)C∗scat{.}︸ ︷︷ ︸
scattering

.

Bm,j [zi] = Bm,j [z1, · · · , zm−j+1] are the Bell’s polynomials.

νj(~r0) = 〈k(k − 1) · · · (k − j + 1)〉 are the falling factorial moments.

ν1(~r0) =
∑

k k pk(~r0) is the average number of descendants per generation.

STATIONARY MOMENTS AND AVERAGES: TRAVELLED LENGTH 〈Lm〉
If the particle losses due to absorptions in V and leakages from the boudaries are larger than the gain due to population growth, then the limit lim

t→+∞
Lm(~r0, ~ω0, t) exists. In this

case, we obtain the equation for the stationary moments of the travelled lenght Lm. By integrating this equation uniformly over all initial positions and directions in the volume
V , we get:

〈
Lm
〉
S︸ ︷︷ ︸

entering flux

= ηd
V

S

[
m
〈
Lm−1〉

V︸ ︷︷ ︸
past history

−
〈
σ(~r0)Lm

〉
V︸ ︷︷ ︸

loss by collisions

+
〈
σ(~r0) pscat(~r0)C∗scat{Lm}

〉
V︸ ︷︷ ︸

scattering

+
〈
σ(~r0)pcap(~r0)ν1(~r0)Lm

〉
V︸ ︷︷ ︸

emission after capture

+

m∑
j=2

〈
σ(~r0) pscat(~r0) νj(~r0)Bm,j [C

∗{Li}]
〉
V︸ ︷︷ ︸

purely branching term

]
. (2)

AVERAGE LENGTH 〈L〉 - GENERAL CASE

〈
L
〉
S

= ηd
V

S

(
1 +

〈
σ(~r0) (V − 1)L

〉
N

)
, where V = pcap(~r0) ν1(~r0) + pscat(~r0)C∗scat{.} . (3)
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CRITICAL CASE, ν1 = 1
In this case, the formula (3) can be simplified. Then

we recover the Cauchy formula’s:

〈
L
〉
S

= ηd
V

S
.

• Homogeneous medium (black): σ = 1

• Heterogeneous medium (red): σ1|2 = 1|0.5

• Anisotropic medium (blue): σ = 1

ω′ =

{
uniform(0, 2π) with proba 0.5
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