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INTRODUCTION

In the context of reactor physics, one is often called to relate the physical properties of a medium to the statistics of the random trajectories of the neutrons flowing through
it. To this aim, we focus on the Cauchy’s formula, which establishes a link between the average length of the neutron paths (proportional to the medium opacity) and the
volume-to-surface ratio of the traversed medium. Originally established for random straight lines, this formula was recently shown to apply also to Pearson random flights [1-3],
and to branching exponential flights [4,5]. In this work, thanks to a Feynman-Kac approach [4], we consider some extensions of such results for neutrons undergoing scattering,
absorption and branching, in heterogeneous and anisotropic media. A validation of the proposed formulas via Monte Carlo simulations is discussed.

The simplicity of some of these opacity formulas might provide a useful tool for the validation of a Monte Carlo code.
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MEDIUM AND HYPOTHESIS BRANCHING EXPONENTIAL FLIGHTS

Properties of the medium : q The paths performed by neutrons are random in nature, and can be modelled by resorting to a stochastic process:
the branching exponential flights.

e heterogeneous,
cross section o (r)

At each time step dt, the neutron :
probabilities py, (7); P

. . e collides with a nucleus of the medium, with a probability o v d?
e anisotropic:

scattering kernel Ci.t (0 — &');
isotropic fission kernel C'(&w — &') = cst.

e has no interaction with the medium and goes straight ahead, with a probabil-
ity (1 — ovdt)

Hypotheses: When neutrons interact with the medium, they

o the velocity v of the neutron is assumed constant e are scattered on a nucleus with a probability ps..: and a kernel C.q;

along the trajectory; e are captured by a nucleus with p.,,: and then k > neutrons are emitted by

the nucleus with a probability pj in a direction given by C.

e media have vacuum boundary conditions.
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INTERESTING QUANTITIES BACKWARD EQUATION FOR THE m-TH MOMENT OF THE TRACE L™
The opacity (2 is proportional to the average length We followed the lines of the Feynman-Kac formalism and found the backward equation for L™ (7, &g, t):
travelled in the volume V by the particles that are in-
jected uniformly at ﬂ;s“fface 5 {L)s: %—agt = L1 4V (7o, G) L™ 40(70) peap (7o) D 5 (7o) By (O (L] 1)
past hzstory " J=2 _

—~
purely branching term

where L* — \ﬁo.ﬁf;@ — o (70) +0(70) Deap(To) v1(70) C*{. } +£7(Fg)pscat(ro) Croid } .

NV o ——
streaming emission after capture SCCLtt@an
Two other observables are also relevant, By j[2il = Bum.ilz1, -+, 2m—;11] are the Bell’s polynomials.
e total number of occured collisions in V, v (%) = (k(k — 1)+~ (k — j + 1)) are the falling factorial t
: - o . —1)---(k— are the falling factorial moments.
e the survival probability S;, which is the probabil- 70 J 5
ity that at time ¢ at least one particle is still in V. v1(ro) = >, kpr(rg) is the average number of descendants per generation.
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STATIONARY MOMENTS AND AVERAGES: TRAVELLED LENGTH (L")

If the particle losses due to absorptions in V' and leakages from the boudaries are larger than the gain due to population growth, then the limit t llI_El L™ (rp,do, t) exists. In this
— 400

case, we obtain the equation for the stationary moments of the travelled lenght L™. By integrating this equation uniformly over all initial positions and directions in the volume

V, we get:

<Lm>S — ndg m <Lm >V o <O-(TO)Lm>V T <U(T0)pscat(r0) Cscat{Lm}>V < ( )pcap(TO)Vl TO Lm V ‘|‘Z pscat TO) Vi (TO) Bm,j [C {LZ}DV : (2)
N—_—— | S N -_ e —
entering flux ~ past history loss by collisions scattering emission after capture J=2 )
K purely branching term
AVERAGE LENGTH (L) - GENERAL CASE CRITICAL CASE, v = 1
In this case, the formula (3) can be simplified. Then
|4 , , , L\ we recover the Cauchy formula’s:
<L>S — 77d§ (1 - <O-(TO) (V o 1) L>N) 7 where V' = pcap(ro) Vi (TO) + pSC&t(TO) Csca,t{'} . (3) Y
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