Universal properties of branching random walks in confined geometries

Idea of the problem...

Idea of the problem...

Idea of the problem...

The quantity of corn that the bug eats is proportional to the lenght ℓ that it travels in the field.

Idea of the problem...

What is the mean lenght that a bug can travel inside the field?

Idea of the problem...

What is the mean lenght that a bug can travel inside the field?

Idea of the problem...

What is the mean lenght that a bug can travel inside the field?

Idea of the problem...

What is the mean lenght that a bug can travel inside the field?

Idea of the problem...

What is the mean lenght that a bug can travel inside the field?

Idea of the problem...

What is the mean lenght that a bug can travel inside the field?

Idea of the problem...

What is the mean lenght that a bug can travel inside the field?

Idea of the problem...

What is the mean lenght that a bug can travel inside the field?

Idea of the problem...

What is the mean lenght that a bug can travel inside the field?

... in the field of nuclear reactors

... in the field of nuclear reactors

... in the field of nuclear reactors

The power delivered by a certain region of the reactor is proportional to the mean lenght travelled by neutrons inside.

... in the field of nuclear reactors

At each collision with a nucleus of the medium, the neutron

- can be scattered by the nucleus
- can be absorbed. Then in case of a fission, this gives rise to 1,2 , or 3 or more neutrons, with different probabilities
\longrightarrow Branching random walks

Describe the walk...

- At every scattering, the new direction is chosen uniformly
- the lenght r travelled between two collisions is given by $p(r)$

Most of the time we consider that the process is markovian (the bug/neutron has "no memory"), which gives, in a homogeneous medium, an exponential form for p :

$$
p(r)=\sigma \mathrm{e}^{-\sigma r}
$$

where $1 / \sigma$ is the mean of p. σ can be seen as the cross section of the medium.

... and first result, known since a "long" time

Purely diffuse problem

$$
\left\{\begin{array}{l}
\langle L\rangle_{S}=\eta_{d} \frac{V}{S} \\
\langle N\rangle_{S}=\sigma\langle L\rangle_{S}
\end{array}\right.
$$

Bénichou et al., EPL, 7042 (2005)
Blanco et Fournier, PRL, 97230604 (2006)

with absorption and branching

$$
\begin{cases}\langle L\rangle_{s} & =\eta_{d} \frac{V}{S}\left[1+\sigma(\nu-1)\langle L\rangle_{v}\right] \\ \langle N\rangle_{v} & =\sigma\langle L\rangle_{v}\end{cases}
$$

Zoia, Dumonteil, Mazzolo, EPL, 10040002 (2012)

But...

(

But...

Svensson T., Vynck K., Adolfsson E., Farina A., Pifferi A. and Wiersma D. S., PRE, 89022141 (2014)

Solution...

The processus is not markovian anymore. We can not stop the walker at the border and restart it as if he actually starts from the border!

Thus the first step is not given by $p(r)$ anymore.

Solution...

The processus is not markovian anymore. We can not stop the walker at the border and restart it as if he actually starts from the border!

Thus the first step is not given by $p(r)$ anymore.

Real first step

$$
h(r)=\sigma \int_{r}^{+\infty} p(\ell) \mathrm{d} \ell
$$

Last frame

Purely diffusive process

$$
\left\{\begin{array}{l}
\langle L\rangle_{S}=\eta_{d} \frac{V}{S} \\
\langle N\rangle_{S}=\sigma\langle L\rangle_{S}
\end{array}\right.
$$

with absorption and branching

$$
\begin{cases}\langle L\rangle_{S} & =\eta_{d} \frac{V}{S}\left[1+\sigma(\nu-1)\langle L\rangle_{V}\right] \\ \langle N\rangle_{V} & \neq \sigma\langle L\rangle_{V}\end{cases}
$$

Last frame

Purely diffusive process

$$
\left\{\begin{array}{l}
\langle L\rangle_{s}=\eta_{d} \frac{V}{S} \\
\langle N\rangle_{S}=\sigma\langle L\rangle_{S}
\end{array}\right.
$$

with absorption and branching

$$
\begin{cases}\langle L\rangle_{S} & =\eta_{d} \frac{V}{S}\left[1+\sigma(\nu-1)\langle L\rangle_{V}\right] \\ \langle N\rangle_{S} & =\sigma \eta_{d} \frac{V}{S}\left[1+(\nu-1)\langle N\rangle_{V}\right]\end{cases}
$$

Last frame

Purely diffusive process

with absorption and branching

$$
\left\{\begin{array}{l}
\langle L\rangle_{S}=\eta_{d} \frac{V}{S} \\
\langle N\rangle_{S}=\sigma\langle L\rangle_{S}
\end{array}\right.
$$

$$
\begin{cases}\langle L\rangle_{S} & =\eta_{d} \frac{V}{S}\left[1+\sigma(\nu-1)\langle L\rangle_{V}\right] \\ \langle N\rangle_{S} & =\sigma \eta_{d} \frac{V}{S}\left[1+(\nu-1)\langle N\rangle_{V}\right]\end{cases}
$$

