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• How can we characterise the complexity of a model? 

• Data with random errors: find the model that best 
captures the patterns hidden within the data

• Model:  
—  not too simple: we want to be able to fit the data 
—  not too complex: to capture the main patterns 
Simple models are preferred, unless the data calls for a 
more complex one.
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• The idea   Classifying all the possible models in term of their 
posterior probability: 

 
in order to find the model        that has the highest probability to 
be a good model for the system given the data set  

• Difficulty     The huge number of models.  
Ex. for spin models:  —               possible type of interactions 
                                  —               possible models 
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• The idea   Classifying all the possible models in term of their 
posterior probability: 
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be a good model for the system given the data set 
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• Simplify, using models with only fields and pairwise interactions: 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• Is it a good idea to restraint the choice to this type of models? 
Does pairwise/field interactions play a special role? Are these 
models simpler? (less complex) 

• They don’t seem to play a special role: 

Only fields and pairwise interactions?

1rst data set

ŝ = {~s (i)}

BMS

Ex.
with n=3
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• Using Bayes’ theorem: 
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P (ŝ |Mi)P0(Mi)

P (ŝ)



• Using Bayes’ theorem: 

 
—>  Rank with the Likelihood P (ŝ |M)
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• Using Bayes’ theorem: 
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• Consider a model       with K parameters, 
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• Consider a model       with K parameters, 

• Probability that the system is in the configuration      of the spins: 
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• Consider a model       with K parameters, 

• Probability that the system is in the configuration      of the spins: 

• Probability that the system produces the     configurations      
                                of the spins

  Likelihood P (ŝ |M)
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• Probability that the system produces the     configurations     of the 
spins: 
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• Probability that the system produces the     configurations     of the 
spins: 

•           is a concave function, as  
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empirical average

• Probability that the system produces the     configurations     of the 
spins: 

•           is a concave function, as  
        

•                     passes by a maximum at        such that:
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• We can re-write the Likelihood: 

• Expansion for large    , using the Saddle-point method in     : 

• Log-likelihood for large N 
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~F (ŝ)·~✓ � logZM(

~✓ ) ] P
0

�
~✓ |M

�
dK~✓

~✓⇤
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• Given a model       , the family of probability distribution:  
forms a Riemannian manifold in the space of all distributions.    

• In this space, each point, parametrised by    , corresponds to a probability 
distribution 

• The natural metric on this manifold is given by the FIM:  
 
 
 

• Varying the parameters of the model from a small          gives rise to similar 
distributions that correspond to nearby points in this space. The small volume 
that is formed by the variation             is then  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• Choice of the prior on the values of the parameters:  

 
Best choice in absence of any information: its form stay invariant under re-
parametrisation (doesn’t give more importance to any parametrisation). 

• It is the volume of the entire manifold: Complexity represents how broad the 
model is in term of describing various probability distributions. 
A model is complex if it can fit a wide range of data. In a way, it also means that 
it is a poorly informative model. 
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• We can re-write the partition function: 
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• We can re-write the partition function: 

 

• The structure of             depends only on the structure of loops     :  
   — the number of loops 
   — the length of each loop 
   — how the operators are in relations through the loops  
—> Models with the same loop structure has the same Complexity
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• It exists a certain number of transformations that conserve the loop structure of 
the models:  
they are the bijections that map the a set of     spins     to another set of  
    spins     (while conserving the structure the operators that can be created with 
this spins) 

• Gauge Transformations  (Automorphisms of the group of operators): they 
conserve the geometry of the model 

                  

       Gauge Transformations

Ex.
7 interactions 

15 loops
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7 loops of 4 interactions 
1 loop of 7 interactions

n ~s
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• It exists a certain number of transformations that conserve the loop 
structure of the models: they are the bijections that map the set of 
spin s to another set of spin sig, while conserving the structure of 
all the operators 

• =   Gauge Transformations  (Automorphisms of the group of 
operators)  

• Total number of Gauge Transformations for a system with     spins: 

 

       Gauge Transformations
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• Gauge Transformations (GT) allow us to partition the space of models 
into classes of models that are images from one to another by GT. 

• Within a class models have  
  — the same geometrical properties (loop structure)  
  — the same complexity 
——> “Complexity Classes”  

• The cardinality of a class is necessary                      and is  more 
precisely given by the invariants under GT 

       Complexity Classes

 NGT (n)

Ex.
Class with 15 models
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• Complexity is the characteristic of a model that can account for a broad range 
of data: 
      —  the most complex models: where all parameters are independent  
      —  the simplest models: the complete models   

• Models are partitioned into complexity classes, in which models are 
connected by Gauge Transformations and share the same geometrical 
structure (loop structure, same invariants) 

• If there were a way of choosing the best model in term of its internal geometries 
this will highly reduce the number of models that should be tested  
Geometries of the models are directly related to the patterns that are hidden 
inside the data. 

• Complexity is not monotonic with the number K of parameters:  

 
Depending on the values of N, which method should we adopt? 
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