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INTRODUCTION – BAYESIAN MODEL SELECTION ON SPIN MODELS
A fundamental issue in data analysis is to find the model that best captures the patterns hidden within the data,

despite the random errors that effect them. The model should be complex enough to be able to fit the data, but simple
enough to capture its main patterns.

Consider a system of n spins that
take random values in {−1,+1}:

Q? What would be the best model for the system, that could explain what we observe/reproduce similar data?

How? Classifying all the possible modelsMi to find the one with the highest posterior probability P (Mi | ŝ). However,
this is a very difficult task, due to the huge
number of models.

To simplify, it is common to reduce the space
of the possible models to models with only
field and pairwise interactions.

Is it a good idea? Are these models simpler?

=⇒ Pairwise interactions don’t seem to play
any special role.

HOW MANY MODELS?
For the spin models:

– 2n − 1 possible interactions
– 22

n−1 possible spin models

Ex. n = 2 : 8 models n = 4 : 32768 models
n = 3 : 128 models n = 5 : 2147483648 models

Models with only fields and pairwise interactions:
– n (n+ 1)/2 possible interactions
– ∼ 2n

2

possible models

Ex. n = 2 : 8 models n = 4 : 1024 models
n = 3 : 64 models n = 5 : 32768 models

COMPLEXITY OF SPIN MODELS

Using Bayes’ theorem: P (M| ŝ) = P (ŝ |M)P0(M)

P (ŝ)
, where

In absence of information, the prior P0(M) can be taken uniform,
and models may be ranked directly with P (ŝ |M).

Probability that the spin system is in the configuration ~s(i):

Expanding for a large size N of the data set, finally leads, in the framework of Bayesian Model Selection, to [2, 4]:

Geometrical Complexity

cM = log

∫
RK

√
det J(~θ) dK~θ

SPACE OF PDFS

◦ For a given a model M, the family of probability dis-
tributions {P (~s | ~θ,M)}~θ forms a Riemannian manifold
with natural coordinates ~θ [1].

◦ Each point of this space is a probability distribution
P (~s | ~θ,M).

◦ The natural metric on this manifold is given by the
Fisher Information Matrix [1]:

Jqk(~θ) = ∂θq∂θq logZM(~θ) = 〈fqfk〉 − 〈fq〉〈fk〉

◦ Varying the parameters ~θ from dK~θ gives rise to distri-
butions similar to P (~s | ~θ,M) that correspond to nearby
points in the manifold, contained in the small volume:

dVM =

√
det J(~θ) dK~θ

PRIOR ON THE VALUES OF ~θ
Best choice in absence of any information [2]:

Jeffreys’ prior: P0(~θ |M) =

√
det J(~θ)∫ √

det J(~θ) dK~θ

−→ invariant under re-parametrisation [5];
−→ uniform in the space of observables.

COMPLEXITY – INTERPRETATION

cM = log VM

VM is the total volume of the manifold defined byM:

◦ Complexity represents how broad the model is in term
of describing various probability distributions [2].

◦ A model is complex if it can fit a wide range of data.

GAUGE TRANSFORMATIONS
cM is expected to stay invariant under the transforma-
tion T introduced in Ex a. This invariance emerges ex-
plicitly when expressing ZM(~θ) in the form:

ZM(~θ) = 2n
∏
µ∈M

cosh(θµ)

1 +∑
`∈L

∏
µ∈`

tanh(θµ)


– Loop ` : subset ` ⊆M such that

∏
µ∈` f

µ(~s) = 1 ;
– Set L : set of all the loops ofM.

ZM(~θ) depends on few characteristics ofM:
– number |M| of operators;
– the structure of the loops L of theM;

which are invariant under the transformation T . We call
(such a transformation) T a Gauge Transformation as it
preserves the geometry of the model.

Thus cM stays invariant under T , which allows defining
complexity classes of models (images through a GT and
with the same value of cM).

Ex. one class with 15 models:
Each model has:
– 7 interactions;
– 15 loops,

structure:
{37, 47, 71}

COMPLEXITY CLASSES
n = 4 32768 models only 46 classes ◦ Models with pairwise interactions are not simpler.

◦ cM is not monotonic in the number of parameters.
◦ cM is between two limit curves:

– Complete models are the simplest models;
– Models with only independent operators are the
most complex.

◦ Complementary classes: same number of classes for mod-
els with |M| operators than for models with 2n−1−|M|.

DEGENERATE MODELS

Degenerate models Operators share parameters:
−→ |M| operators, but K parameters with K < |M| ;
−→ αk degeneracy of θk, for k ∈ [1,K] .

Result In general, degeneracy reduces the complexity.

Ex 1. models with |M| =
K∑
k=1

αk independent operators:

exp cnon−degM = π|M| exp cdegM = πK
K∏
k=1

√
αk

Ex 2. models with
a single loop:
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