Analyzing Binary Data: Is your Model Truly Pairwise?

Clélia de Mulatier ${ }^{1}$, Paolo Mazza ${ }^{2}$, and Matteo Marsili ${ }^{3}$

${ }^{1}$ University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, USA
${ }^{2}$ Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
${ }^{3}$ The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy

INTRODUCTION

A fundamental issue in data analysis is to find the model that best captures the patterns hidden within the data, despite the random errors that effect them. This model should be complex enough to be able to fit the data, but simple enough to capture only the relevant patterns of the data.

In the context of binary data, pairwise spin models - Ising models - have been widely used to address this question. But, are pairwise models the best for your data? Are the relevant patterns of your data truly pairwise?

Pairwise Models are not necessarily simpler

Q? Which is the best spin model for your data?

Interactions:	
-	field
\bigcirc	pairwise
	3 -body
	4-body

Ex.

EXAMPLES OF BINARY DATASETS
Neuronal Data [?,3,5]

Voting Data [4] Ex. data from the US supreme Court

Financial Data [6] Time series, at each time step each stock i takes the value:

- $s_{i}=+1$, if the stock has gone up (profit);
- $s_{i}=-1$, if the stock has gone down (loss).

EQUIVALENCE CLASSES

HOW MANY...?

Approach 2: SElection Within and Between Classes

$\left.\begin{gathered}\text { Independent Models }(\mathrm{IM}) \longrightarrow \mathcal{C}_{\text {ind }}(n, r) \\ (n+1) \text { classes } \\ \mid \mathcal{C}^{\text {nr }} \\ r! \\ \text { models/class } \quad K=r\end{gathered} \right\rvert\,$ $\mathcal{L}_{\text {max }}^{\text {ind }}=-\sum_{i=1}^{r} S\left[p_{i}\right]-(n-r) N \log (2)$
$S[p]=-[p \log p+(1-p) \log (1-p)] \quad p_{i}=\mathbb{P}_{\text {data }}\left[\phi_{i}(s)=-1\right]$ \Longrightarrow Best IM: set of the most bias independent operators

$p_{\text {tata }}^{\mu}{ }^{\prime}$ Original Basis

Sub-Complete Models (SCM)
$(n+1)$ classes $\quad \sim 2^{r(n-r)}$ models/class $\quad K=2^{r}-1$ $\left|\mathcal{C}_{s c}(9, r)\right|=\left\{1,511,4.10^{4}, 8.10^{5}, 3.10^{6}, 3.10^{6}, 8.10^{5}, 4.10^{4}, 511,1\right\}$

$$
\mathcal{L}_{\max }^{s c}=\sum_{\boldsymbol{\sigma}_{\mid r}} k_{\boldsymbol{\sigma}_{\mid r}} \log \left(\frac{k_{\boldsymbol{\sigma}_{\mid r}}}{N}\right)-(n-r) N \log (2)
$$

\longrightarrow Monte Carlo simulation in each class:

\longrightarrow Evidence exact and easy to compute (no need to infer)
$P\left(\hat{\boldsymbol{s}} \mid \mathcal{M}_{s c}\right)=\frac{1}{2^{N(n-r)}} \frac{\Gamma\left(2^{r-1}\right)}{\pi^{2^{r-1}} \Gamma\left(N+2^{r-1}\right)} \prod_{\boldsymbol{\sigma}_{r}} \Gamma\left(k_{\boldsymbol{\sigma}_{r}}+\frac{1}{2}\right)$

Minimally Complex Models (MCM) $\longrightarrow \mathcal{C}_{m c}\left(n,\left\{r_{i}\right\}\right)$ $\sum_{r=0}^{n}$ part(r) classes $K=\sum_{\left\{r_{i}\right\}}\left(2^{r_{i}}-1\right)$

$$
\left|\mathcal{C}_{m c}(9,\{1,2,3\})\right|=1.510^{13}
$$

$n=9$
$\frac{r_{1}=3}{0} 0$
$r_{2}=1$
(0) 00
$r=6$
\longrightarrow Contains all IM and SCM.
All rank ordered: 26443 models

