StatPhys 27

ANALYZING BINARY DATA: IS YOUR MODEL TRULY PAIRWISE?

Clélia de Mulatier¹, Paolo Mazza², and Matteo Marsili³

¹University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, USA ²Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy ³The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy

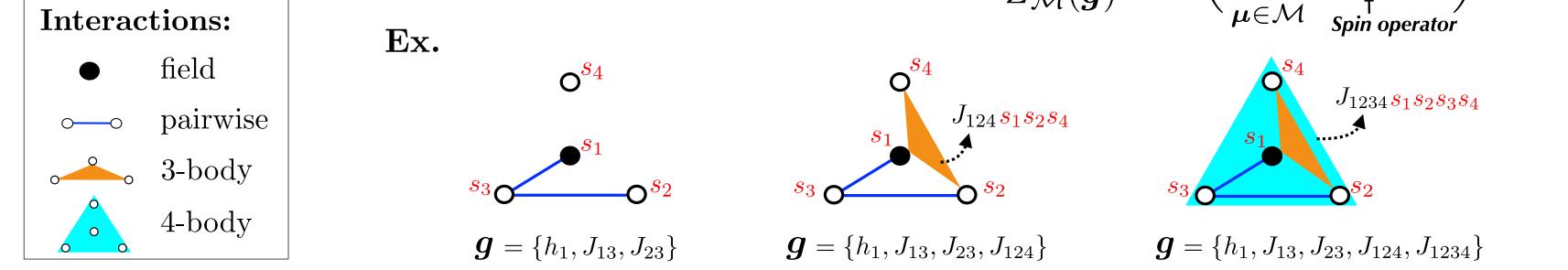
INTRODUCTION

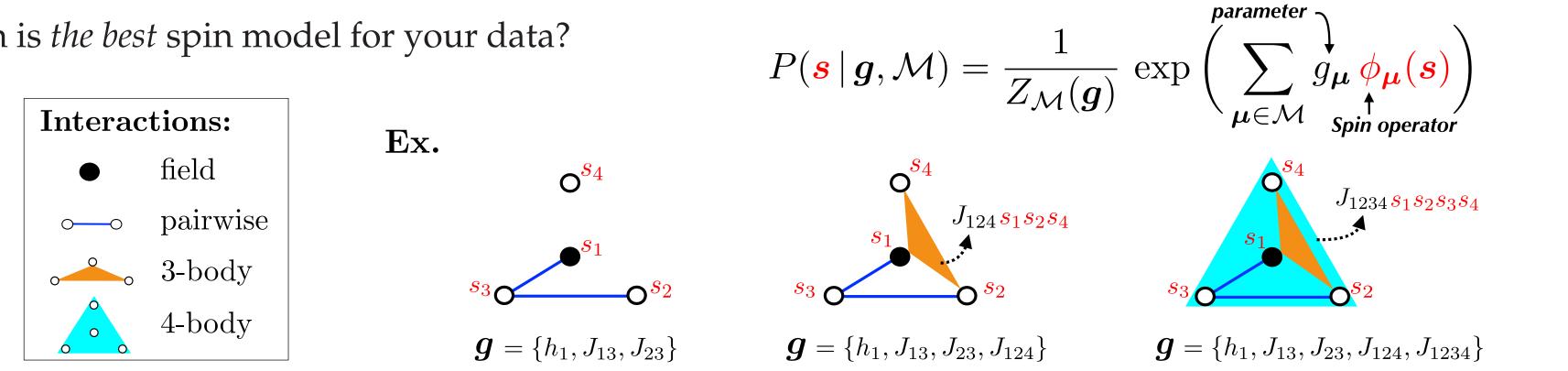
A fundamental issue in data analysis is to find the model that best captures the patterns hidden within the data, despite the random errors that effect them. This model should be **complex enough** to be able to fit the data, but **simple enough** to capture only the relevant patterns of the data.

In the context of **binary data**, pairwise spin models – Ising models – have been widely used to address this question. But, are pairwise models the best for your data? Are the relevant patterns of your data truly pairwise?

PAIRWISE MODELS ARE NOT NECESSARILY simpler

Q? Which is *the best* spin model for your data?





EXAMPLES OF BINARY DATASETS Neuronal Data [?,3,5] *s*₁ 1100101001 **S**₂ 0100011000 **S**₃ 0 0 1 0 1 1 0 1 0 1 **S**₄ 1010100101 time bin, ex. ~ 20ms time **Voting Data** [4] Ex. data from the US supreme Court. s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8 s_9 JS SO AS AK DS CT RG SB 101111111 9 justice members 111111111 111111111 **Yes** (1) or **No** (0) votes 000000000

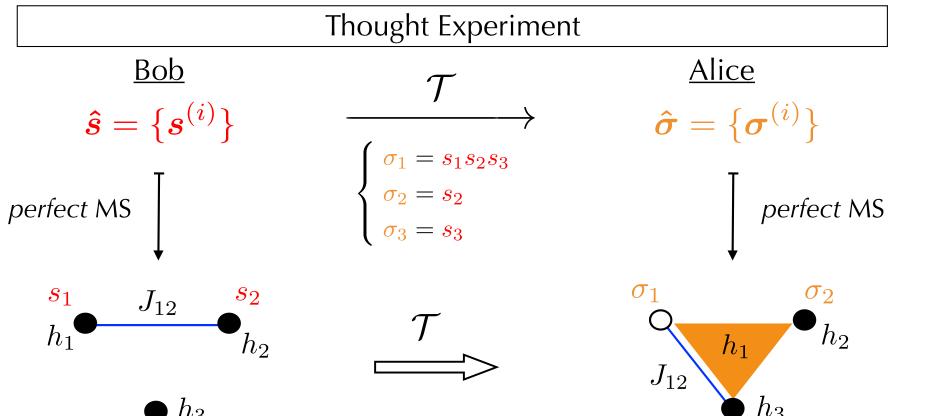
• with the highest evidence, $P(\hat{s} | \mathcal{M}) \longrightarrow \text{Bayesian approch};$ **How?** Two approaches. Find *the* model \mathcal{M} : • which achieves the shortest description of the data, $L(\hat{s} \mid \mathcal{M}) \longrightarrow MDL$ principle. Quality of the Fit Model Complexity For large datasets, $\frac{\kappa}{2} \log \left(\frac{\kappa}{2} \right)$ $\log P(\hat{\boldsymbol{s}} \mid \mathcal{M}) = \log P(\hat{\boldsymbol{s}} \mid \mathcal{M}, \boldsymbol{g}^*) = -L(\hat{\boldsymbol{s}} \,|\, \mathcal{M})$ the two criteria are identical [1,2]: $+ c_{\mathcal{M}}$ (assuming Jeffrey's prior) $\nearrow \propto N$ Due to **Geometry** Number of Parameters K Maximum Log-Likelihood

Problem? difficult task due to the huge number of models and the difficulty to evaluate $P(\hat{s} | \mathcal{M})$ or $L(\hat{s} | \mathcal{M})$, even with the expansion.

Common simplification, reduce the space of models to models with only field and pairwise interactions, which are simpler to infer and to interprete. Is it a good idea? Are these models really *simpler*?

Thought experiment:

- \implies Pairwise interactions don't play any special role.

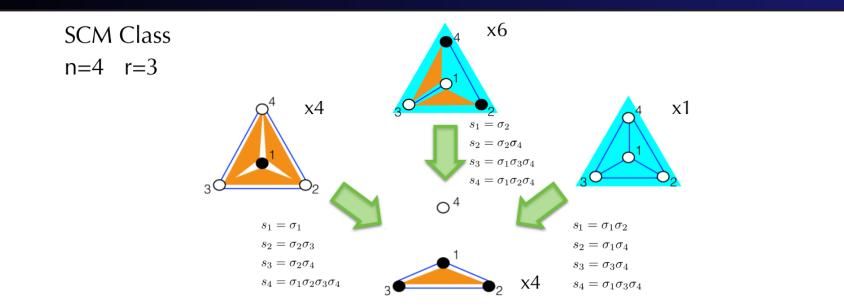


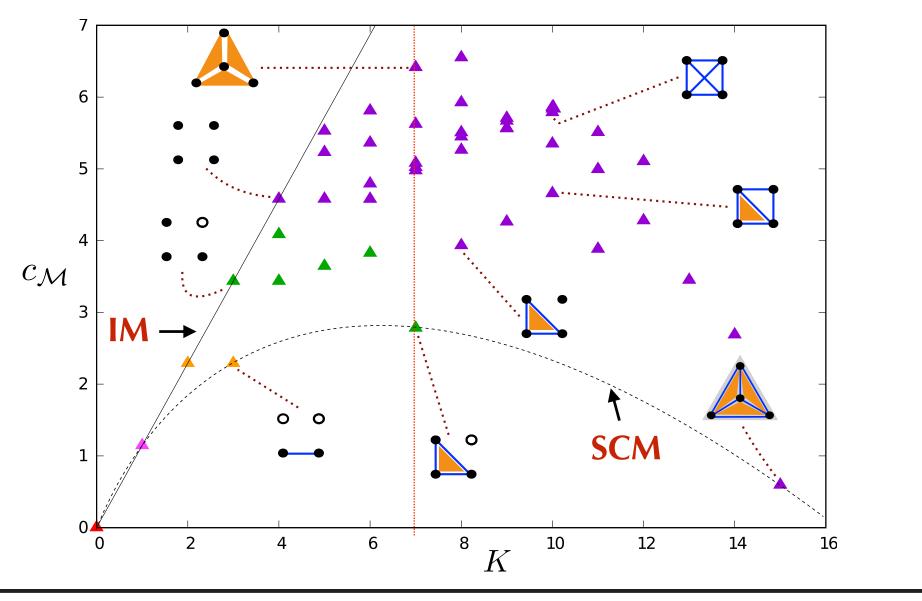
Time series, at each time step each Financial Data [6] stock *i* takes the value:

• $s_i = +1$, if the stock has gone up (profit);

• $s_i = -1$, if the stock has gone down (loss).

EQUIVALENCE CLASSES

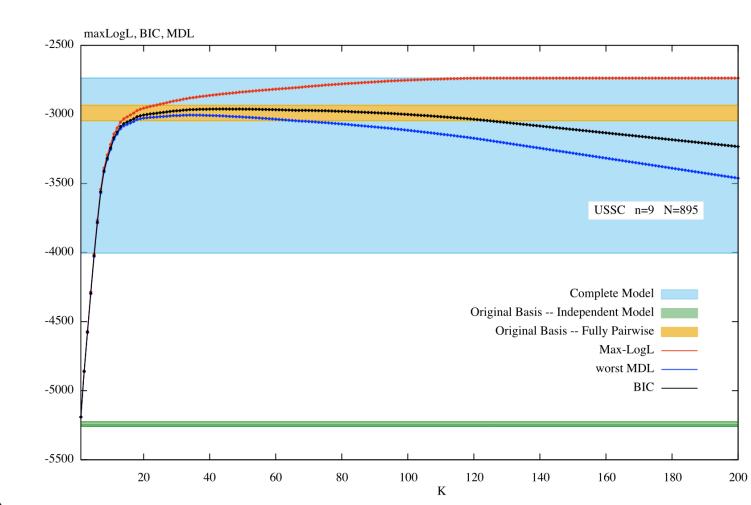


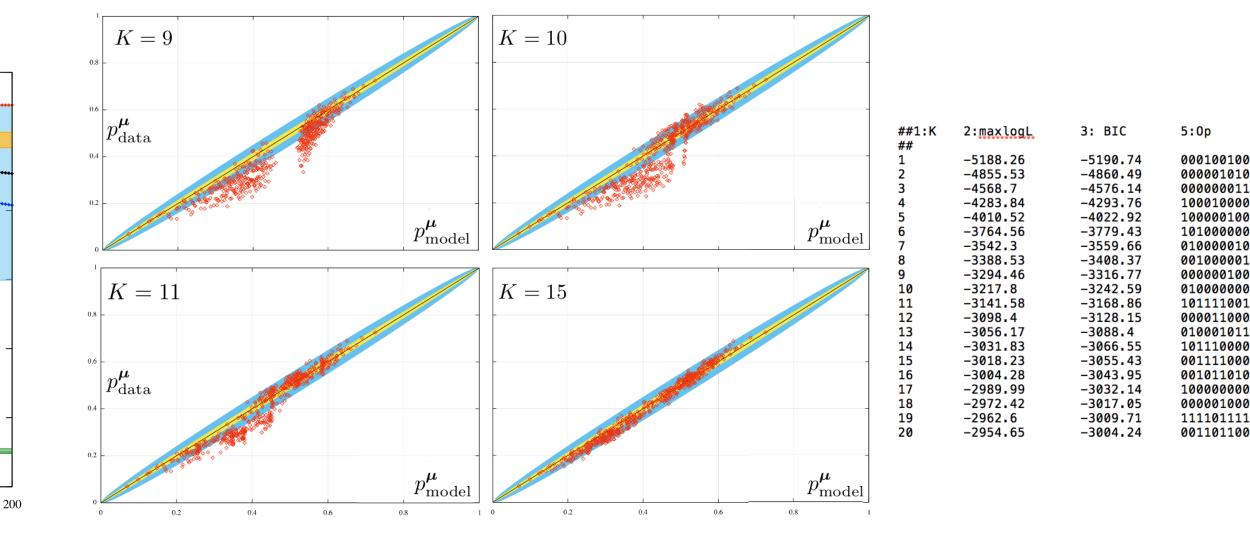


 \implies Model selection shouldn't be basis dependent...

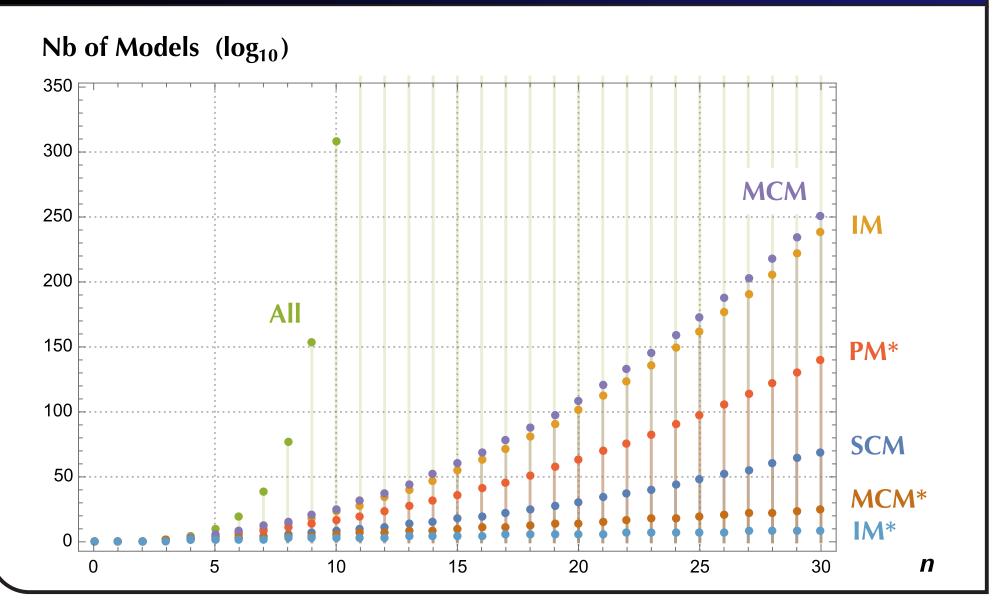
σ_3

APPROACH 1: SHORTEST PATH IN THE SPACE OF MODELS

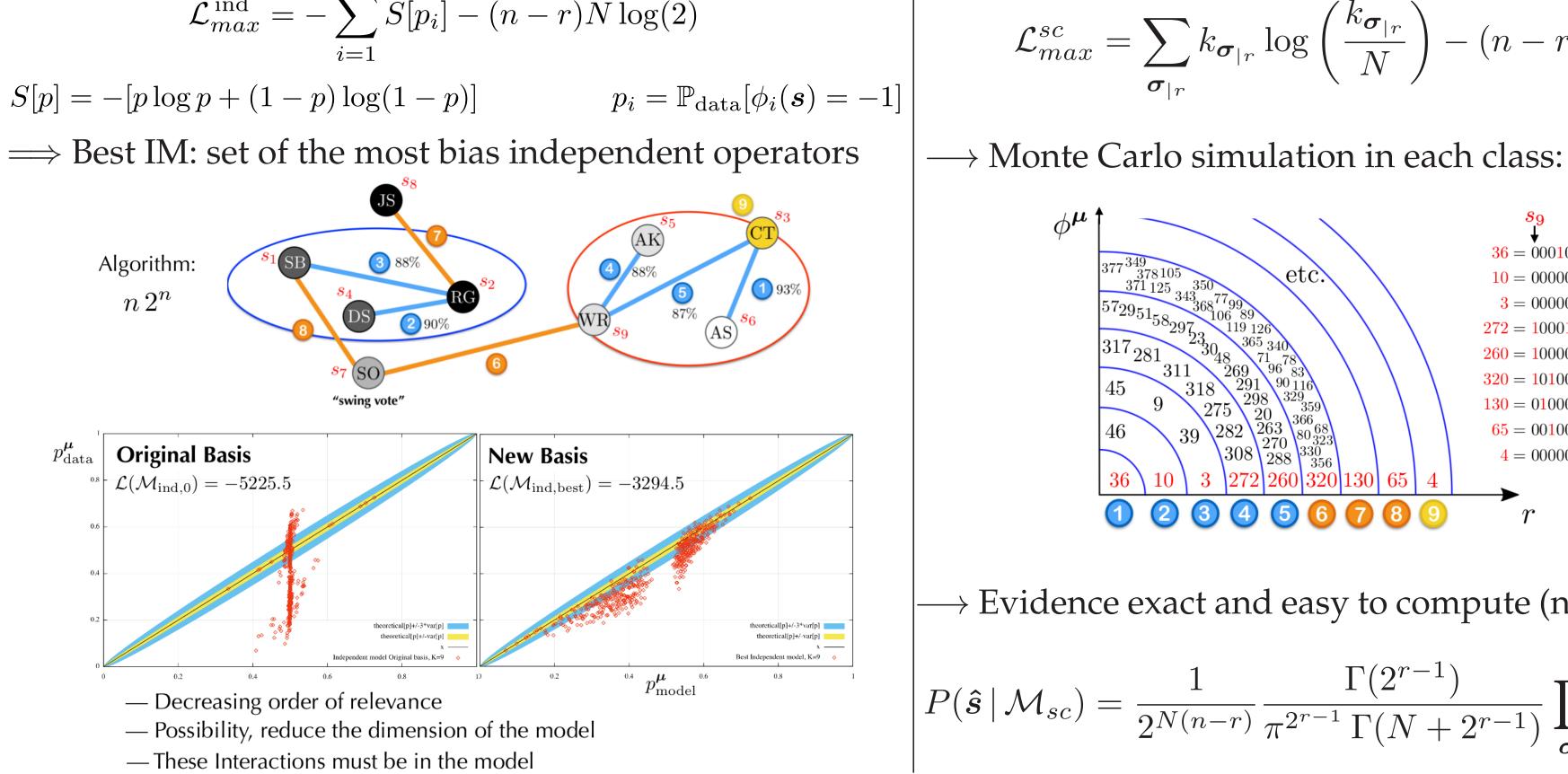


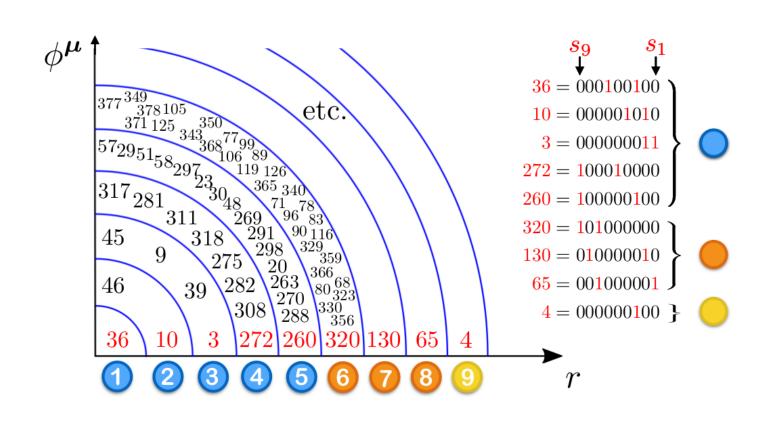


HOW MANY...?



APPROACH 2: SELECTION WITHIN AND BETWEEN CLASSES





 \rightarrow Evidence exact and easy to compute (no need to infer):

$$P(\hat{\boldsymbol{s}} \mid \mathcal{M}_{sc}) = \frac{1}{2^{N(n-r)}} \frac{\Gamma(2^{r-1})}{\pi^{2^{r-1}} \Gamma(N+2^{r-1})} \prod_{\boldsymbol{\sigma}_r} \Gamma\left(k_{\boldsymbol{\sigma}_r} + \frac{1}{2}\right)$$

$$n = 9$$

$$T = 0$$

$$r_{3} = 2$$

$$T = 0$$

$$F = 0$$

$$r_{3} = 2$$

$$K = 11$$

$$r_{3} = 2$$

$$R = 11$$

$$r_{3} = 2$$

$$R = 10$$

$$r_{3} = 2$$

$$R = 10$$

$$r_{3} = 2$$

$$r_{3} = 2$$

$$R = 10$$

$$r_{3} = 2$$

$$r_{3} = 2$$

$$r_{3} = 2$$

$$R = 10$$

$$r_{3} = 2$$

$$r_{3}$$