The Stochastic Complexity

of Spin Models

Are Pairwise Models Really Simple?

APS March Meeting 2019

Alberto Beretta, Claudia Battistin,
Clélia de Mulatier, Iacopo Mastromatteo, Matteo Marsili

Context

- Model complexity? Why is this interesting?
- What about spin models?

Complexity emerges from the problem of Model Selection

- Finite data with random errors: find the model that best captures the patterns hidden within the data...
- Ideally, we would like the model to be:
- not too simple: to be able to fit well the data;
- not too complex: to capture the main patterns of the data and not noise.
\longrightarrow We would prefer a simple model, unless the data calls for a more complex one.

Spin Models are used for binary data

Spin Models are probabilistic models commonly used to analyze binary datasets.

- Neuronal data:

—Voting data
- Financial data (ex. Stock market);
- Medical imaging data (for disease diagnoses)
— etc.

Using Models are Spin Models

Fields and Pairwise Interactions

Ex. $n=4$

Field
K=10 interactions, parametrized by:
$\vec{g}=\left\{h_{1}, h_{2}, h_{3}, h_{4}, J_{13}, J_{23}, \cdots\right\}$

Fully connected pairwise model

Probability that the n spins are in the configuration \vec{s} :

$$
s_{i} \in\{-1,+1\}
$$

$$
P(\vec{s} \mid \vec{g}, \mathcal{M})=\frac{1}{Z_{\mathcal{M}}(\vec{g})} \exp \left(\sum_{i \in \mathcal{M}} h_{i} s_{i}+\sum_{p a i r(i, j) \in \mathcal{M}} J_{i j} s_{i} s_{j}\right)
$$

Ising Models are Spin Models

Fields and Pairwise Interactions

Ex. $n=4$

Fully connected pairwise model
$\vec{g}=\left\{h_{1}, h_{2}, h_{3}, h_{4}, J_{13}, J_{23}, \cdots\right\}$

$$
\vec{g}=\left\{h_{1}, J_{13}, J_{23}\right\}
$$

Model $\mathcal{M}=$ skeleton

Parameters \vec{g}

General Spin Models

Interactions of Any Order ${ }^{\circ}=3$-body interaction

$$
\text { Ex. } n=4
$$

$$
\circ_{0}^{\circ}=4 \text {-body interaction }
$$

Probability that the n spins are in the configuration \vec{s} :

$$
P(\vec{s} \mid \vec{g}, \mathcal{M})=\frac{1}{Z_{\mathcal{M}}(\vec{g})} \exp \left(\sum_{\substack{k \in \mathcal{M} \\ \text { parameters }}} g_{k} \phi_{k}(\vec{s})\right)_{\text {spin operator }}
$$

\rightarrow Rigorous

Which Model is the Simplest?

7 parameters
a)

[Model = skeleton]
b) $\quad O^{4}$
c) $\quad \bullet^{4}$

How is simplicity/complexity related to the model architecture?

Are Pairwise Models Simpler?

Is simplicity/complexity related to the order of the interactions?

Complexity of Spin Models

- Define Model Complexity?
- Complexity of Spin Models? Thought Experiment...

Model Complexity

[J. Rissanen] Fisher Information and Stochastic Complexity (1996)

$$
\operatorname{COMP}(\mathcal{M})=\underbrace{\frac{K}{2} \log \frac{N}{2 \pi}}_{\uparrow}+c_{\mathcal{M}}+O\left(\frac{1}{N}\right)
$$

$$
c_{\mathcal{M}}=\log \left[\int \sqrt{\operatorname{det} I(\boldsymbol{g})} \mathrm{d}^{K} \boldsymbol{g}\right]
$$

- $c_{\mathcal{M}}$ more complex models are more flexible, they can fit well broad type of data patterns.
[I. J. Myung, V. Balasubramanian, M. A. Pitt] Counting probability distributions: Differential geometry and model selection
- Difficult to compute

Thought Experiment

Bob's dataset:

$$
\hat{s}=\left\{\vec{s}^{(i)}\right\}
$$

Thought Experiment

Bob's dataset:

$$
\hat{s}=\left\{\vec{s}^{(i)}\right\}
$$

"magic" MS \quad rank all $P(\mathcal{M} \mid \hat{s})$

- h_{3}
s_{3}

Thought Experiment

Bob's dataset:

$$
\hat{s}=\left\{\vec{s}^{(i)}\right\}
$$

"magic" MS

$$
\begin{gathered}
\underset{\{ }{\left\{\begin{array}{l}
\sigma_{1}=s_{1} s_{2} s_{3} \\
\sigma_{2}=s_{2} \\
\sigma_{3}= \\
s_{3}
\end{array}\right.}
\end{gathered}
$$

Alice's dataset:

$$
\hat{\sigma}=\left\{\vec{\sigma}^{(i)}\right\}
$$

- h_{3}
s_{3}

Thought Experiment

Bob's dataset:

$$
\hat{s}=\left\{\vec{s}^{(i)}\right\}
$$

"magic" MS

$$
\frac{\mathcal{T}}{\left\{\begin{array}{l}
\sigma_{1}=s_{1} s_{2} s_{3} \\
\sigma_{2}=s_{2} \\
\sigma_{3}=s_{3}
\end{array}\right.}
$$

Alice's dataset:

$$
\begin{aligned}
\hat{\sigma}= & \left\{\vec{\sigma}^{(i)}\right\} \\
& \quad{ }^{\prime} \text { magic" }^{\mathrm{MS}}
\end{aligned}
$$

- h_{3}
s_{3}

Thought Experiment

Bob's dataset:

$$
\hat{s}=\left\{\vec{s}^{(i)}\right\}
$$

"magic" MS

$$
\frac{\mathcal{T}}{\left\{\begin{array}{l}
\sigma_{1}=s_{1} s_{2} s_{3} \\
\sigma_{2}=s_{2} \\
\sigma_{3}=s_{3}
\end{array}\right.}
$$

Alice's dataset:

$$
\begin{aligned}
\hat{\sigma}= & \left\{\vec{\sigma}^{(i)}\right\} \\
& \quad{ }^{\prime} \text { "magic" }^{M S}
\end{aligned}
$$

???

Thought Experiment

Bob's dataset:

$$
\hat{s}=\left\{\vec{s}^{(i)}\right\}
$$

"magic" MS

$$
\frac{\mathcal{T}}{\left\{\begin{array}{l}
\sigma_{1}=s_{1} s_{2} s_{3} \\
\sigma_{2}=s_{2} \\
\sigma_{3}=s_{3}
\end{array}\right.}
$$

Alice's dataset:

$$
\hat{\sigma}=\left\{\vec{\sigma}^{(i)}\right\}
$$

$$
\downarrow \text { "magic" MS }
$$

$\bigcirc \sigma_{1} \quad \bigcirc_{h_{2}}^{\sigma_{2}}$

- h_{3}
σ_{3}

As:

$$
\begin{aligned}
& \sigma_{2}=s_{2} \\
& \sigma_{3}=s_{3}
\end{aligned}
$$

Thought Experiment

"magic" MS

Bob's dataset:

$$
\hat{s}=\left\{\vec{s}^{(i)}\right\}
$$

$$
\frac{\mathcal{T}}{\left\{\begin{array}{l}
\sigma_{1}=s_{1} s_{2} s_{3} \\
\sigma_{2}=s_{2} \\
\sigma_{3}=s_{3}
\end{array}\right.}
$$

Alice's dataset:

$$
\hat{\sigma}=\left\{\vec{\sigma}^{(i)}\right\}
$$

$$
\downarrow \text { "magic" MS }
$$

As:

$$
s_{1} s_{2}=\sigma_{1} \sigma_{3}
$$

Thought Experiment

Bob's dataset:

$$
\hat{s}=\left\{\vec{s}^{(i)}\right\}
$$

"magic" MS

Alice's dataset:

$$
\left\{\begin{array}{l}
\sigma_{1}=s_{1} s_{2} s_{3} \\
\sigma_{2}=s_{2} \\
\sigma_{3}=s_{3}
\end{array}\right.
$$

$$
\begin{aligned}
\hat{\sigma}= & \left\{\vec{\sigma}^{(i)}\right\} \\
& { }^{\prime} \text { magic" }^{\mathrm{MS}}
\end{aligned}
$$

As:

$$
s_{1}=\sigma_{1} \sigma_{2} \sigma_{3}
$$

Thought Experiment

Bob's dataset:

$$
\hat{s}=\left\{\vec{s}^{(i)}\right\}
$$

"magic" MS

Alice's dataset:

$$
\left\{\begin{array}{l}
\sigma_{1}=s_{1} s_{2} s_{3} \\
\sigma_{2}=s_{2} \\
\sigma_{3}=s_{3}
\end{array}\right.
$$

$$
\begin{aligned}
\hat{\sigma}= & \{\vec{\sigma}(i)\} \\
& {\left[{ }^{(m a g i c} \text { " } \mathrm{MS}\right.}
\end{aligned}
$$

\longrightarrow These 2 models must be As Complex!!

Thought Experiment

Same complexity!

First Conclusions:

- Difficult to guess from the look of the models if one is more complex.
- In particular:
- pairwise models are not necessarily simpler
- complexity is not defined by the order of the interactions

Some Results and Perspectives...

\mathcal{T} is a change of basis

It preserves:

- The number of interactions in the model;
- The intrinsic architecture of the model (loop structure).

"Complexity Classes"

classes of equivalent models

Ex. 1 class with 15 models

4 spins
7 interactions

"Same" Model seen in different bases
All the Same Complexity

Ex. Complexity for $n=4$

Ex. $n=4$ spins
$\Delta=1$ complexity class

32768 models, only 46 classes

At fixed K?

Ex. $n=4$ spins
$c_{\mathcal{M}}$ increases with the number of

Conclusion

Complexity

does not dependent on the order of the interactions depends on how interactions are arranged in the model

Simplest models? = the most constraints between the interactions:
[At fixed K]

- less degrees of freedom;
- as compact as possible.

Simpler models: implement more constraints
As a result, they can account for less variety of data types.
Easier to falsify

Some Perspectives...

- Model selection within class: Compare on Max Log-Likelihood only
- Change the basis of the data to facilitate model selection:

Is there a basis in which the best model would be pairwise?

- Model selection among models of minimally complex classes.
- Is the high complexity of pairwise models at the Origin of Pairwise Sufficiency?
[Ref] L. Merchan, I. Nemenman

So... Which Model is the Simplest?

7 parameters

[Model = skeleton]
b)
O^{4}
c) $\quad \bullet^{4}$

Questions?

Alberto Beretta

Iacopo Mastromatteo

The Abdus Salam International Centre for Theoretical Physics (ICTP)

The Stochastic Complexity of Spin Models: Are Pairwise Models Really Simple?
Entropy 2018, 20(10), 739

