The Stochastic Complexity of Spin Models

Are Pairwise Models Really Simple?

APS March Meeting 2019

Alberto Beretta, Claudia Battistin,

Clélia de Mulatier, lacopo Mastromatteo, Matteo Marsili

• Model complexity? Why is this interesting?

• What about spin models?

Complexity emerges from the problem of **Model Selection**

- Finite data with random errors: find the model that best captures the patterns hidden within the data...
- Ideally, we would like the model to be:

— **not too simple**: to be able to <u>fit well</u> the data;

— **not too complex**: to capture the <u>main patterns</u> of the data and not noise.

 \longrightarrow We would prefer a simple model, unless the data calls for a more complex one.

Results

Spin Models are used for binary data

Spin Models are probabilistic models commonly used to analyze **binary datasets**.

— Voting data

- Financial data (ex. Stock market);
- Medical imaging data (for disease diagnoses)

— etc.

[Talk] E. Amstrong

Fields and Pairwise Interactions

Ising Models are Spin Models

Fields and Pairwise Interactions

Pairwise model with **K=3 interactions**

$$\vec{g} = \{h_1, J_{13}, J_{23}\}$$

Model \mathcal{M} =skeletonParameters \vec{g}

Results

Probability that the *n* spins are in the **configuration** \vec{s} :

$$P(\vec{s} \mid \vec{g}, \mathcal{M}) = \frac{1}{Z_{\mathcal{M}}(\vec{g})} \exp\left(\sum_{k \in \mathcal{M}} g_k \phi_k(\vec{s})\right)$$

$$\sum_{parameters} \sum_{parameters} \sum$$

Results

Which Model is the Simplest?

How is simplicity/complexity related to the model architecture?

Are Pairwise Models Simpler?

Is simplicity/complexity related to the order of the interactions?

• Define Model Complexity?

Complexity of Spin Models? Thought Experiment...

Model Complexity

[J. Rissanen] Fisher Information and Stochastic Complexity (1996)

$$\operatorname{COMP}(\mathcal{M}) = \underbrace{\frac{K}{2} \log \frac{N}{2\pi}}_{\text{for } 2\pi} + \underbrace{c_{\mathcal{M}}}_{\text{for } 2\pi} + O\left(\frac{1}{N}\right)$$

Due to Number of Parameters *K* Due to Geometry

$$\boldsymbol{c}_{\mathcal{M}} = \log \left[\int \sqrt{\det I(\boldsymbol{g})} \, \mathrm{d}^{K} \boldsymbol{g} \right]$$

• *C_M* more complex models are more flexible, they can fit well broad type of data patterns.

[I. J. Myung, V. Balasubramanian, M. A. Pitt] Counting probability distributions: Differential geometry and model selection

• Difficult to compute

Thought Experiment

Bob's dataset:

$$\hat{s} = \{\vec{s}^{(i)}\}$$

Thought Experiment

Bob's dataset:

Complexity of spin Models

Thought Experiment

Alice's dataset:

$$\hat{\sigma} = \{\vec{\sigma}^{\,(i)}\}$$

Complexity of spin Models

Complexity of spin Models

Thought Experiment

As: $s_1s_2 = \sigma_1\sigma_3$

Thought Experiment

These 2 models must be As Complex!!

Same complexity!

First Conclusions:

- Difficult to guess from the look of the models if one is more complex.
- In particular:
 - pairwise models are not necessarily simpler
 - complexity is not defined by the order of the interactions

Some Results and Perspectives...

Complexity of spin Models

Results

${\mathcal T}$ is a change of basis

It preserves:

— The **number of interactions** in the model;

— The **intrinsic architecture** of the model (*loop* structure).

"Same" Model seen in different bases

All the Same Complexity

Ex. Complexity for n = 4

32 768 models, only 46 classes

Results

At fixed K?

Conclusion

Complexity

does not dependent on the order of the interactions **depends on** how interactions are arranged in the model

Simplest models? = **the most constraints** between the interactions: [At fixed K] — less degrees of freedom;

— as compact as possible.

Simpler models: implement **more constraints**

As a result, they can account for **less variety of data types.** Easier to falsify

Some Perspectives...

• Model selection within class: Compare on Max Log-Likelihood only

- Change the basis of the data to facilitate model selection: Is there a basis in which the best model would be pairwise?
- Model selection among models of *minimally complex classes*.
- Is the high complexity of pairwise models at the Origin of Pairwise Sufficiency?

[Ref] L. Merchan, I. Nemenman

On the Sufficiency of Pairwise Interactions in Maximum Entropy Models of Networks

So... Which Model is the Simplest?

Questions?

Matteo Marsili

Alberto Beretta

Claudia Battistin

lacopo Mastromatteo

The Abdus Salam International Centre for Theoretical Physics (ICTP)

The Stochastic Complexity of Spin Models: Are Pairwise Models Really Simple? Entropy **2018**, 20(10), 739