Beyond Pairwise Models for Binary Data

Model Selection with Minimally Complex Model

Clélia de Mulatier, Paolo P. Mazza, Matteo Marsili APS March Meeting 2020

Modeling Binary Data

Context

Spin Models

Modeling Data

Model

States, observables,

Noisy Data: find the model that best captures the patterns hidden within the data...

Modeling Binary Data... with Pairwise Spin Models

How does it work?	Statistical Mechanics of the US Supreme Court Edward. Lee $\begin{aligned} & \text {, Chase } P \text {. Broedersz } \& \text { Wililam Bialek }\end{aligned}$ Journal of Statistical Physics 160, 275-301(2015) \| Cite this article
$O^{R G} O^{\mathrm{SB}}$	9 justices, 895 votes
CT \bigcirc Owr	Conservative (1) or Liberal (-1) $\begin{gathered}\text { 2nd } \\ (1994-2005)\end{gathered}$
${ }^{\text {DS }} \bigcirc \bigcirc_{\text {JS }}$	
$\operatorname{AK} \bigcirc{ }_{A S} \bigcirc \bigcirc_{S O}$	$\longrightarrow s_{i} \in\{-1,+1\} \longrightarrow$ Spins
	> System is stationary

Modeling Binary Data... with Pairwise Spin Models

How does it work?

> Underlying distribution has a form:
$P(s \mid \mathcal{M}, \boldsymbol{g})=\frac{1}{\uparrow} \underset{\substack{Z_{\mathcal{M}}(\boldsymbol{g})}}{ } \exp \left(\sum_{i \in \mathcal{M} \uparrow} h_{i} s_{i}+\sum_{\text {pair }(i, j) \in \mathcal{M} \uparrow} J_{i j} s_{i} s_{j}\right)$
Parameters to fit

Modeling Binary Data... with Pairwise Spin Models

How does it work?

> Underlying distribution has a form:

$$
\boldsymbol{g}^{*}=\underset{g}{\operatorname{argmax}} P(\hat{s} \mid \mathcal{M}, \boldsymbol{g})
$$

At the maximum:

$$
\begin{aligned}
\left\langle s_{i}\right\rangle_{\text {model }} & =\left\langle s_{i}\right\rangle_{\text {data }} \\
\left\langle s_{i} s_{j}\right\rangle_{\text {model }} & =\left\langle s_{i} s_{j}\right\rangle_{\text {data }}
\end{aligned}
$$

Relevant observables:

$$
\left\langle s_{i}\right\rangle \quad\left\langle s_{i} s_{j}\right\rangle
$$

Model Selection

Do we need all the interactions?

Can we reproduce the correlation patterns with less interactions?

Maybe, can we figure out who is actually connected to who?

Model Selection

Are the $\left\langle s_{i}\right\rangle$ and $\left\langle s_{i} s_{j}\right\rangle$ sufficient?
to capture the relevant patterns of the data?

$$
\begin{array}{ll}
0 & 0=3 \text {-body interaction } \\
0 & 0 \\
0 & \text {-body interaction }
\end{array}
$$

Could it be relevant higher order patterns in the systems?

Which model to select?

Ideally, we would like the model to be:
not too simple to be able to fit well the data;
not too complex to capture the main patterns of the data and not noise.

Which model to select?

Bayesian Model Selection:
Maximize $\quad P(\hat{s} \mid \mathcal{M})$

Minimum Description Length principle:
Minimize $\quad L(\hat{s} \mid \mathcal{M})=-\log P\left(\hat{s} \mid \mathcal{M}, \boldsymbol{g}^{*}\right)+\operatorname{COMP}(\mathcal{M})$

Which model to select?

Maximize $\quad P(\hat{s} \mid \mathcal{M}) \longrightarrow$ Hard to compute...

Minimum Description Length principle:
Minimize

$$
L(\hat{s} \mid \mathcal{M})=-\log P\left(\hat{s} \mid \mathcal{M}, \boldsymbol{g}^{*}\right)+\operatorname{COMP}(\mathcal{M})
$$

Pairwise models

Less models:

$$
2^{n^{2} / 2} \text { models! }
$$

Why we like pairwise models?
pairwise interactions easier to interpret
able to fit broad types of data
good algorithms for pairwise model selection

But: we already perform a selection...
Are there alternatives?

The Complexity of Spin Models

Are Pairwise Models really Simple?

Alberto Beretta, Claudia Battistin,
Clélia de Mulatier, lacopo Mastromatteo, Matteo Marsili

The Stochastic Complexity of Spin Models: Are Pairwise Models Really Simple?
Entropy 2018, 20(10), 739

Which Model is the Simplest?

[Model $=$ skeleton]
4 spins
7 parameters

$$
\begin{aligned}
& \circ \circ=3 \text {-body interaction } \\
& \circ \circ_{\circ}^{\circ}=4 \text {-body interaction }
\end{aligned}
$$

$$
L(\hat{s} \mid \mathcal{M})=-\log P\left(\hat{s} \mid \mathcal{M}, \boldsymbol{g}^{*}\right)+(\operatorname{COMP}(\mathcal{M}))
$$

Thought Experiment

\longrightarrow These 2 models must be As Complex!!
Pairwise models are not necessarily simpler

Complexity of Spin Models

Complexity
does not dependent on the order of the interactions

Equivalent classes of models
[At fixed K]
Simplest models? = the most constraints between the interactions:

- less degrees of freedom;
- as compact as possible.

Complexity of Spin Models

Complexity
does not dependent on the order of the interactions

Equivalent classes of models
[At fixed K]
Simplest models? = the most constraints between the interactions:

- less degrees of freedom;
- as compact as possible.

Pairwise model selection depends on the basis!

Bob's dataset:
$\hat{s}=\left\{\vec{s}^{(i)}\right\}$
pairwise MS $T\left\{\begin{array}{l}\sigma_{1}=s_{1} s_{2} s_{3} \\ \sigma_{2}=s_{2} \\ \sigma_{3}=s_{3}\end{array}\right.$

h_{3}
s_{3}

Alice's dataset:
$\hat{\sigma}=\left\{\vec{\sigma}^{(i)}\right\}$
pairwise MS

Minimally Complex Model Selection

Coming soon on Arxiv....

Clélia de Mulatier, Paolo P. Mazza, Matteo Marsili

Minimally Complex Models (MCM)

Model composed of
Independent Sub-Complete Models

$$
\begin{aligned}
& 0=3 \text {-body interaction } \\
& 00_{0}^{0}=4 \text {-body interaction }
\end{aligned}
$$

Minimally Complex Models (MCM)

Model composed of
Independent Sub-Complete Models

$$
\begin{aligned}
& 0=3 \text {-body interaction } \\
& 00_{0}^{0}=4 \text {-body interaction }
\end{aligned}
$$

Minimally Complex Models (MCM)

Why we like MCM?

Less models:

$$
2^{n^{2}} \text { models }
$$

They are simple (at fix K and fix degree of freedom)
Among models with the lowest complexity

Interpretation Tell us about
dependencies and independencies in the system communities

MCM are easy to compare!

Bayesian Model Selection:

Maximize

$$
P(\hat{s} \mid \mathcal{M})
$$

Easy to compute No need to infer parameters!

Minimum Description Length principle:
Minimize

$$
L(\hat{s} \mid \mathcal{M})=\left(-\log P\left(\hat{s} \mid \mathcal{M}, \boldsymbol{g}^{*}\right)\right)+(\operatorname{COMP}(\mathcal{M}))
$$

Algorithm for finding the best MCM

Find the Best Independent Model:

basis in which the system is closest to be independent
$>$ Most biased independent operators
> Decreasing Order of relevance
Reduce the dimension:
Select only the dimension of the dataset are interesting

Find the best MCM based on this basis:

US Supreme Court?

Find Best Independent Model

86% of PM !

Change basis and reduce dimension

$\sqrt{\mathcal{T}}$

Find Best Minimally Complex Model

Find Best Minimally Complex Model

Searching for communities in Bird song data
Eve Armstrong (NYIT) Marc Schmidt Vijay Balasubramanian
David White (Wilfrid Laurier University, CA)

Primary Auditory Cortex: Search for coordinated neuronal ensembles

Taku Banno
Lalitta Suriya-Arunroj
Ron DiTullio

Yale Cohen
Jean-Hugues Lestang
Jaejin Lee

Vijay Balasubramanian
Gregory Forkin
Songhan Zhang

Cassius and Domo

Minimally Complex Models

Tell us about Dependencies / Independencies in the system
Communities

Easy to compare No fitting required!
Bayesian approach and MDL principle approach straightforward

Many models but Simple operations \rightarrow GPU!

Independent of the basis in which the data are recorded!

Conclusion

Explored new possibilities

There is not yet a perfect model selection.
All techniques are complementary and tells us a part of the story.

Search for simple representation rather than
simple interpretation

