Beyond Pairwise Models for Binary Data

Model Selection with Minimally Complex Model

<u>Clélia de Mulatier</u>, Paolo P. Mazza, Matteo Marsili APS March Meeting 2020

Modeling Binary Data

Context

Spin Models

Introduction

Modeling Data

Noisy Data: find the model that best captures the patterns hidden within the data...

Modeling Binary Data... with Pairwise Spin Models

How does it work?

RG

CT

DS

SB

WR

JS

SO

()

Statistical Mechanics of the US Supreme Court

Edward D. Lee 🖂, Chase P. Broedersz & William Bialek

Journal of Statistical Physics 160, 275–301(2015) | Cite this article

9 justices, 895 votes Conservative (1) or Liberal (-1)

2nd Rehnquist Court (1994-2005)

AK O

 $\rightarrow > s_i \in \{-1, +1\} \longrightarrow Spins$

> System is stationary

> Each vote is independently sampled from an underlying probability distribution

Modeling Binary Data... with Pairwise Spin Models

How does it work?

> Underlying distribution has a form:

$$P(\boldsymbol{s} \mid \mathcal{M}, \boldsymbol{g}) = \frac{1}{Z_{\mathcal{M}}(\boldsymbol{g})} \exp\left(\sum_{i \in \mathcal{M}} h_i \boldsymbol{s}_i + \sum_{pair(i,j) \in \mathcal{M}} J_{ij} \boldsymbol{s}_i \boldsymbol{s}_j\right)$$

Parameters to fit

Modeling Binary Data... with Pairwise Spin Models

How does it work?

> Underlying distribution has a form:

$$P(\boldsymbol{s} \mid \mathcal{M}, \boldsymbol{g}) = \frac{1}{Z_{\mathcal{M}}(\boldsymbol{g})} \exp\left(\sum_{i \in \mathcal{M}} h_i \boldsymbol{s}_i + \sum_{pair(i,j) \in \mathcal{M}} J_{ij} \boldsymbol{s}_i \boldsymbol{s}_j\right)$$

Parameters to fit

Infer the parameters:

$$\boldsymbol{g}^* = \operatorname*{argmax}_{g} P(\hat{\boldsymbol{s}} \mid \mathcal{M}, \boldsymbol{g})$$

At the maximum:

$$\langle s_i \rangle_{\text{model}} = \langle s_i \rangle_{\text{data}}$$

 $\langle s_i s_j \rangle_{\text{model}} = \langle s_i s_j \rangle_{\text{data}}$

Relevant observables:

$$\langle s_i \rangle \qquad \langle s_i s_j \rangle$$

Introduction

Model Selection

Do we need all the interactions?

Can we reproduce the correlation patterns with less interactions?

Maybe, can we figure out who is actually connected to who?

Introduction

Model Selection

Are the $\langle s_i \rangle$ and $\langle s_i s_j \rangle$ sufficient? to capture the relevant patterns of the data?

Could it be relevant higher order patterns in the systems?

Which model to select?

Ideally, we would like the model to be:

not too simple to be able to <u>fit well</u> the data;

not too complex to capture the <u>main patterns</u> of the data and not noise.

Which model to select?

Bayesian Model Selection:

Maximize $P(\hat{s} \mid \mathcal{M})$

Minimum Description Length principle:

Minimize
$$L(\hat{s} \mid \mathcal{M}) = -\log P(\hat{s} \mid \mathcal{M}, \boldsymbol{g}^*) + \operatorname{COMP}(\mathcal{M})$$

How good is the fit?

How complex is the model?

Which model to select?

Introduction

Pairwise models

Less models:

 $2^{n^2/2}$ models!

Why we like pairwise models?

pairwise interactions easier to interpretable to fit broad types of datagood algorithms for pairwise model selection

But: we already perform a selection...

Are there alternatives?

The Complexity of Spin Models

Are Pairwise Models really Simple?

Alberto Beretta, Claudia Battistin, <u>Clélia de Mulatier</u>, Iacopo Mastromatteo, Matteo Marsili

The Stochastic Complexity of Spin Models: Are Pairwise Models Really Simple? Entropy **2018**, 20(10), 739

Which Model is the Simplest?

Complexity of spin Models

Thought Experiment

Pairwise models are not necessarily simpler

Complexity of Spin Models

Complexity does not dependent on the order of the interactions

[At fixed K]

Simplest models? = **the most constraints** between the interactions:

- less degrees of freedom;
- as compact as possible.

Complexity of Spin Models

Complexity does not dependent on the order of the interactions

[At fixed K]

Simplest models? = **the most constraints** between the interactions:

- less degrees of freedom;
- as compact as possible.

Complexity of spin Models

Pairwise model selection depends on the basis!

Minimally Complex Model Selection

Coming soon on Arxiv....

Clélia de Mulatier, Paolo P. Mazza, Matteo Marsili

Minimally Complex Models (MCM)

Model composed of

Independent Sub-Complete Models

Minimally Complex Models (MCM)

Model composed of

Independent Sub-Complete Models

Minimally Complex Models (MCM)

Why we like MCM?

Less models:

 2^{n^2} models

They are simple (at fix K and fix degree of freedom)

Among models with the lowest complexity

Interpretation Tell us about

dependencies and **independencies** in the system **communities**

MCM are easy to compare!

Algorithm for finding the best MCM

Find the Best Independent Model:

basis in which the system is closest to be independent

> Most biased independent operators> Decreasing Order of relevance

Reduce the dimension:

Select only the dimension of the dataset are interesting

Find the best MCM based on this basis:

US Supreme Court? JS RG SB WR CT (AS)

Find Best Independent Model

86% of PM !

Change basis and reduce dimension AK (3)RG 88% SB WR 8 88% 6 87% 5 CTSO AS 93%

23456789

JS

90%

2

Find Best Minimally Complex Model

Find Best Minimally Complex Model

Other applications

Searching for communities in Bird song data

Eve Armstrong (NYIT) Marc

Marc Schmidt

Vijay Balasubramanian

David White (Wilfrid Laurier University, CA)

Primary Auditory Cortex: Search for coordinated neuronal ensembles

Taku BannoYale CohenVijay BalasubramanianLalitta Suriya-ArunrojJean-Hugues LestangGregory ForkinCassius and
DomoRon DiTullioJaejin LeeSonghan Zhang

Minimally Complex Models

 Tell us about
 Dependencies / Independencies in the system

 Communities

Easy to compare No fitting required!

Bayesian approach and MDL principle approach straightforward

Many models but Simple operations —> GPU!

Independent of the basis in which the data are recorded!

Conclusion

Explored new possibilities

There is not yet a perfect model selection.

All techniques are complementary and tells us a part of the story.

Search for simple representation

rather than

simple interpretation