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THE BOGOLIUBOV VACUUM ENERGY Eg (LEE-HUANG-YANG TERM)
Case D =3

In three dimensions we have
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In order to calculate the integral we change the integration variable by using

_ 4V zuzd [t— 1 N x—z} _ AvVzuzd (t—b1)(t — be)

2
k 22 -1 22 -1 t

: (S3)

t TUzZ

Assuming z > 1 and by > by, the new integration interval is ¢ € [b2, 00). The change of variable (S3) removes the
internal square root in Eq. (S2) leading to
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where a; and ay are roots of
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The integration of Eq. (S2) then results in a combination of elementary and elliptic functions. In the particular case
gi2 = ﬂ:,/gllggg we obtain
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In Eq. (S7) E(¢|v) is the elliptic integral of the second kind, F(v) is the complete elliptic integral, F(¢|v) is the
elliptic integral of the first kind, and K (v) is the complete elliptic integral of the first kind.

Finally, let us mention the identity fG% (z,u,z) = 23/22%/2 34 (1/2 u,1/z) which follows from Eq. (S1) and which
can be useful, for instance, for analyzing the vicinity of the extreme limit n; — 0, where x diverges.



Case D =2

In two dimensions we have
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This function satisfies f% (2, u,z, &) = 222 fC9(1/2,u,1/x,k/\/zr) and, at large &, can be written as
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We neglect the effective-range correction O(£~2), which is exponentially small in terms of the expansion parameter
7. For our analysis it is sufficient to set g12 = £,/911922 and we make use of the explicit expression
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and the property (useful for the case z < 1)
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Case D =1
In one dimension we have
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satisfies f(19) (2, u, x) = 21/22%/2 fAD(1/2,u,1/2). In the particular case g1o = +,/g11g22 we use the explicit expression
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MIXED-BUBBLE REGIME BOUNDARIES

Case D =3

In the upper row of Fig. 2 of the main text, the blue and orange curves comprising the blue areas are determined,
respectively, from the conditions Q”(ny,) = 0 and Q' (ngr) = [Q(nr) — Q(nL)]/(nr — nL), the same conditions as in the
mass-balanced case, explained in the main text. They give, respectively,

1?6 Gunin R e S i ¥ “a? fo(—4z -2 ’
Gmin (2, @) _ (O; ;rz )3 ; { + 4z +2 za+ 32°« + 3z%a( 22' O;JQrZ @) arccos(l/z)} (S16)
gy/mPgPny w22 Az —1) A2 = 1)%/
and
B30 gmax(z, ) (a? + 1)M/* | =8 + 822 — 302°5/2a%/2 — 1223/20°/2 + 1227/205/2 B 2(za)??1In(z — V22 — 1)
g/mP@n,  wad/2z3/ 15(22 — 1) (22 —1)%/2

(S17)
The boundaries comprising the pink areas are given, respectively, by Eqgs. (S16) and (S17) with replaced o — 1/«
and z — 1/z (equivalent to the interchange 1 = 2).
The red upper borders of the “pinch” areas are obtained by the condition that the convex lobe of Q(n_) has a
minimum degenerate with Q(ny,) and Q(ng).

Case D =2

The two-dimensional case is analyzed in the same manner as the three-dimensional one. In spite of the seemingly
explicit dependence on x the results are actually cut-off independent (to the chosen approximation order) because of
the running
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where piyor = MeMgr /(Me + myr). In our notations (z = ma/my and m = /myimz) p11 = m/2v/z, pes = m\/z/2,
and p12 = m/(v/z + 1/4/2). Equation (S18) is valid for 7 = iy’ oo’ /B? < 1, which gives the freedom to choose
the cut-off scale. Indeed, choosing another cutoff & the new coupling constant §,. is related to the old one by the
equation
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The tilde is removed in the second-order term since the difference between g2 and §? is third order in 7 and can be
neglected in the Bogoliubov approximation. In the same spirit the x-dependence of g,/ in the MF energy term gets
cancelled by the explicit logarithmic dependence of Fp.
From Eq. (S19) one can also derive the running of dg = g12 — \/g11g22. Namely,
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The middle row in Fig. 2 thus presents the boundaries of the mixed-bubble regime in terms of the renormalized ratio
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which is x independent in the Bogoliubov approximation. The blue and orange curves comprising the blue-shaded
regions in the middle row of Fig. 2 are obtained in the same manner as Eqgs. (S16) and (S17) and are given, respectively,
by the formulas
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and
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The pink-shaded areas are restricted by the curves Ruyin(1/2z,1/a) (blue) and Rpmax(1/2z,1/a) (orange). The red
boundary is calculated numerically from the condition that Q(n_) has three degenerate minima.

Case D=1

The analysis is also the same. The blue and orange curves for the blue-shaded regions in the lower row of Fig. 2
are obtained from the formulas,
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and, as in higher dimensions, the pink-shaded region boundaries are obtained from Eqs. (S24) and (S25) by setting
a—1/aand z — 1/z.
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