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Binding of heavy fermions by a single light atom in one dimension
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We consider the problem of N identical fermions interacting via a zero-range attractive potential with a lighter
atom in one dimension. Using the few-body approach based on the Skorniakov and Ter-Martirosian equation,
we determine the energies and the critical mass ratios for the emergence of the tetramer, pentamer, and hexamer.
For large N , we solve the problem analytically by using the mean-field theory based on the Thomas-Fermi
approximation. The system becomes bound when the heavy-to-light mass ratio exceeds a critical value, which
grows as N3 at large N . We also employ a more sophisticated Hartree-Fock approach, which turns out to be
equivalent to the Thomas-Fermi approximation for determining the energies, but provides a better description of
the microscopic structure of the clusters.
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The binding of heavy fermions by a light atom is a phe-
nomenon which originates from the competition between the
Pauli pressure for the heavy fermions and the induced attrac-
tion due to the exchange of the light atom. This problem, in the
case of zero-range interactions in free space, is parametrized
by the mass ratio M/m, the number of heavy fermions N ,
and spatial dimensionality. The heavy-light scattering length
a > 0, which determines the size of the 1 + 1 molecule, is
the only dimensional parameter, and can be used as the unit
of length. The 2 + 1 trimer case is well understood in any
dimension: in three dimensions the trimer emerges for M/m >

8.173 [1], in two dimensions for M/m > 3.33 [2], and in
one dimension for M/m > 1 [3]. The reduction of the critical
mass ratio is explained by the qualitative argument that the
centrifugal barrier for the heavy fermions effectively lowers
when decreasing the dimension.

The N + 1 cluster problem was discussed for N � 4 both
in three [4,5] and in two dimensions [6,7]. It turns out that,
with increasing the mass ratio, it becomes possible to bind
more and more heavy atoms. Treating higher N is very
challenging as the problem is nonperturbative, featuring the
fermionic sign problem, significant shell effects, and the on-
set of the Efimov effect in three dimensions at M/m ≈ 13
[5,8,9]. In one dimension these problems either do not exist
or are less pronounced. Thus, this geometry seems suitable
for connecting the limits of small and large N , and for better
understanding the binding mechanism. The largest free-space
cluster in one dimension, the 3 + 1 tetramer, was studied by
Mehta [10] in the Born-Oppenheimer approximation, valid for
M � m.

Here we solve the one-dimensional (1D) N + 1 cluster
problem exactly for N up to 5, determining the correspond-
ing critical mass ratios (see Fig. 1). Then, using the local
Thomas-Fermi approximation for the kinetic energy of the
heavy fermions and the mean-field assumption for the inter-
action, both valid in the large N limit, we predict that the
N + 1 cluster binds at M/m = π2N3/36, and we describe

its properties (size, shape, energy) analytically. Aiming to
improve the accuracy and the description of the clusters with
moderate N , we turn to the Hartree-Fock method. We find that
both the Thomas-Fermi and Hartree-Fock approaches predict
essentially the same energies for the clusters. However, the
latter gives more details on the structure, and well repro-
duces momentum correlations. The energy determination with
this method can be significantly improved by taking higher
Hartree-Fock orbitals into account in a perturbative manner.
The mean-field methods that we employ in this paper are
similar to the ones used for studying bright solitons and liquid
droplets in 1D Bose-Fermi mixtures [11,12].

Our mixture is described by the Hamiltonian

H =
∫ (

− �̂†
x ∂2

x �̂x

2M
− φ̂†

x ∂
2
x φ̂x

2m
+ g�̂†

x φ̂†
x �̂xφ̂x

)
dx, (1)

where �̂†
x and φ̂†

x are the creation operators of, respectively,
heavy and light fermions at position x. We set h̄ = 1, and
assume an attractive light-heavy interaction characterized by
g = −1/(mra) < 0 and by the dimer binding energy E1+1 =
−1/(2mra2), where mr = Mm/(M + m).

The N + 1-body problem, following the method of Sko-
rniakov and Ter-Martirosian (STM) [13], who considered
the 2 + 1 case in three dimensions, can be reformulated
as an integral equation for a function F (q1, . . . , qN−1, qN ),
which is the Fourier transform of the total N + 1-body wave
function �(x1, . . . , xN−1, xN , x = xN ), where the light atom
coordinate x is set to coincide with xN . The function F de-
scribes N − 1 heavy atoms with momenta q1, . . . , qN−1 plus
a heavy-light pair with momentum qN . By setting the (con-
served) total momentum to zero, the pair momentum qN is
replaced by −∑N−1

i=1 qi, and can be omitted. The resulting
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STM equation reads [14,15][
a

2
− 1

2κ (q1, . . . , qN−1)

]
F (q1, . . . , qN−1) = −

∫
d p

2π

∑N−1
j=1 F (q1, . . . , q j−1, p, q j+1, . . . , qN−1)

κ2(q1, . . . , qN−1) + (
p + mr

m

∑N−1
i=1 qi

)2 , (2)

where κ (q1, . . . , qN−1) =
√

−2mrE + mr
M+m

( ∑N−1
i=1 qi

)2 + mr
M

∑N−1
i=1 q2

i and E is the total energy, assumed negative.

To facilitate the numerical solution of Eq. (2) we re-
strict the space of the problem to ordered configurations
q1 < q2 < . . . < qN−1 and use the antisymmetry property
F (q1, . . . , qN−1) = sF (q̄1, . . . , q̄N−1), where (q̄1, . . . , q̄N−1)
is the correctly ordered permutation of (q1, . . . , qN−1)
and s is the sign of the ordering permutation. More-
over, since Eq. (2) conserves parity, i.e., F (q1, . . . , qN−1) =
PF (−q1, . . . ,−qN−1) with P = ±1, we treat the P = +1
and P = −1 sectors separately, restricting the configurational
space to configurations with

∑N−1
i=1 qi � 0. We obtain the

solution of Eq. (2) by discretizing the momenta and diago-
nalizing the resulting matrix, finding, for any mass ratio M/m,
the value of a versus E .

Our results for the bound-state energies up to the 5 + 1
hexamer are shown in Fig. 1. The critical mass ratios for
the emergence of the trimer, tetramer, pentamer, and hexamer
are marked by crosses. They equal, respectively, (M/m)2+1 =
1 ( see Ref. [3]), (M/m)3+1 = 1.76, (M/m)4+1 = 4.2 and
(M/m)5+1 = 12.0, the last of these being determined with
about 5% accuracy. The trimer and tetramer energies are in
agreement, respectively, with Ref. [3] and, asymptotically,
with the Born-Oppenheimer result of Mehta [10]. The parity
of the trimer and tetramer is negative, in accordance with
Refs. [3,10], while the pentamer and hexamer are character-
ized by P = +1.

We now approach the N + 1-cluster problem from the limit
of large N employing two different mean-field methods (cf.
Refs. [11,12]). The first is based on the Thomas-Fermi ap-
proximation for the heavy fermions. Namely, we minimize the
grand potential

� =
∫

[|φ′(x)|2/2m + gn(x)|φ(x)|2 + π2n3(x)/6M
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FIG. 1. Bound-state energies of the trimer (red dotted), tetramer
(green dashed), pentamer (blue solid), and hexamer (black solid)
versus the mass ratio M/m. The crosses indicate the thresholds for
the corresponding clusters.

− ε|φ(x)|2 − μn(x)] dx, (3)

where φ(x) is the wave function of the light atom and n(x) is
the density of the heavy atoms. The term proportional to n3

in Eq. (3) is the Thomas-Fermi kinetic energy density of the
heavy fermions in one dimension. The Lagrange multipliers ε

and μ account, respectively, for the normalization conditions∫
|φ(x)|2 dx = 1, (4)∫
n(x) dx = N. (5)

The minimization of � with respect to n(x) gives

n(x) =
{√

−2Mg[|φ(x)|2 − μ/g]/π, |φ(x)|2 > μ/g,
0, |φ(x)|2 � μ/g.

(6)

Then, to obtain the wave function of the light atom φ(x),
we restrict our analysis to μ < 0 and ε < 0 (since we are
interested in bound states), take φ to be real, and assume
that it has a symmetric bell shape, centered at the origin. We
then introduce the Thomas-Fermi size xTF such that φ2(xTF) =
μ/g: the function n(x) is thus nonzero only in the interval
(−xTF, xTF). The minimization of Eq. (3) with respect to φ

inside this interval leads to the equation

−φ′′(x) −
√

−8Mm2g3

π

√
φ2(x) − μ/gφ(x) = 2mεφ(x),

(7)
the solution of which should be matched with the free solution
φ(x) = φ(xTF) exp[−√−2mε(|x| − xTF)], valid for |x| > xTF.
Multiplying Eq. (7) by φ′, and integrating over x, we get

φ′2 = −2mεφ2 −
√

−32Mm2g3

3π
(φ2 − μ/g)3/2. (8)

The condition φ′(0) = 0 [since we assume φ(x) = φ(−x)],
substituted into Eq. (8), implies

φ2(xTF) = μ/g = φ2(0)(1 − λ), (9)

where we introduced

λ =
[

9π2ε2

−8Mg3φ2(0)

]1/3

. (10)

This dimensionless parameter ranges from 0 to 1, and charac-
terizes the shape of the droplet [see Eq. (15)]. The limit λ → 1
indicates the binding threshold for a new heavy atom since,
in this case, μ = 0. In this limit, Eq. (8) can be integrated
analytically, resulting in

φ(x) = −3πε√
−8Mg3

1

cosh2(
√−mε/2x)

. (11)

Imposing the normalization conditions Eqs. (4) and (5) on
φ(x) we obtain that this limit, i.e., the threshold for the binding
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of N heavy atoms [16], is realized for

M

m
= π2

36
N3, (12)

the size of the cluster at this point is given by

1√−2mε
= 3

−mgN
, (13)

and the total energy reads

E = ε +
∫

π2n3(x)

6M
dx = −mg2

30
N2 = −mg2

30

(
36

π2

M

m

)2/3

.

(14)
We see that for large N , which is the validity criterion of
the Thomas-Fermi approximation, the mean-field treatment
of the light-heavy interaction is also justified since the typi-
cal de Broglie wave length of the atoms is much smaller than
the scattering length a = −1/(mrg) ≈ −1/(mg).

More generally, for λ < 1, i.e., when M/m > π2N3/36,
various cluster properties can be found by writing∫ x

0 F[φ(x)]dx = ∫ φ(0)
φ

F[φ(x)]dφ/|φ′|, valid in the interval
0 < x < xTF. In particular, setting F = 1 and using φ′ from
Eq. (8), we obtain the dependence x(φ) [inverse of φ(x)]:

√−2mεx = λ3/4
∫ 1

φ/φ(0)

dy√
λ3/2y2 − (y2 − 1 + λ)3/2

. (15)

Similarly, by using F (φ) = φ2 and F (φ) =
√

φ2 − φ2(xTF),
Eqs. (4) and (5) can be rewritten, respectively, as√

3π

4
√

2

φ3/2(0)

(−mg)3/4

(M

m

)−1/4

Il (λ) = 1, (16)

and √
3

2
√

2π

φ1/2(0)

(−mg)1/4

(M

m

)1/4

Ih(λ) = N, (17)

with

Il (λ) = 1 − λ

λ3/4
+ 2

∫ 1

√
1−λ

y2 dy√
λ3/2y2 − (y2 − 1 + λ)3/2

, (18)

and

Ih(λ) = 2
∫ 1

√
1−λ

√
y2 − 1 + λ dy√

λ3/2y2 − (y2 − 1 + λ)3/2
. (19)

The total energy of the cluster equals

E = ε + 1

23/4
√

3π

φ5/2(0)(−mg)3/4

m

(M

m

)1/4

IE (λ), (20)

where

IE (λ) = 2
∫ 1

√
1−λ

(y2 − 1 + λ)3/2 dy√
λ3/2y2 − (y2 − 1 + λ)3/2

. (21)

Equations (16) and (17) can be solved for φ(0) and λ as
functions of N , M, m, and g. Then, the shape of the cluster
follows from Eq. (15), and its total energy from Eq. (20),
where ε is deduced from Eq. (10).

We note that λ depends only on the combination mN3/M.
Indeed, by eliminating φ(0) from Eqs. (16) and (17), one
obtains the implicit equation for λ

M

m
= 2π2

3

Il (λ)

I3
h (λ)

N3. (22)

This means that two clusters with different N and M/m but
equal mN3/M have similar shapes. This is valid as long as the
de Broglie wave lengths of the atoms are much smaller than
a, in our case equivalent to N � 1.

Finally, let us discuss the limit λ → 0, reached when
M/m � N3. In this case, it is convenient to change
the integration variable in Eqs. (15), (18), (19), and
(21) to t = (y − √

1 − λ)/(1 − √
1 − λ), such that the

integrals can be expanded at small λ. At the lead-
ing order we obtain xTF

√−2mε ≈ λ
√

π
(5/3)/2
(7/6) �
1, λ ≈ (9π2N3m/32M )1/3, φ(0) ≈ √−mgN , and E ≈ ε ≈
−N2mg2/2. We see that the heavy atoms are much more
localized than the light atom, and, therefore, we deal with a
halo bound state. We observe that the total energy of the N + 1
cluster in this limit is dominated by ε, the kinetic energy of the
heavy atoms being subdominant. We also note that this theory
predicts that EN+1 → N2E1+1 when M/m → ∞, which is the
exact asymptote for any N . Indeed, in this limit, the heavy
atoms are easily localized in a narrow spatial interval and the
problem reduces to the scattering of a light atom by a fixed
potential Ngδ(x) [17].

In the left panels of Fig. 2 we compare the cluster energies
calculated by using the Thomas-Fermi approximation (highest
gray solid curves) with the exact results (lowest solid curves,
same data as in Fig. 1). We see that, although the Thomas-
Fermi approximation provides a clear physical understanding
and a simple (even analytical) treatment of the problem, it is
not very precise at these finite N . The discrepancy comes from
the local-density approximation for the heavy fermions and
from the breakdown of the mean-field approximation for the
interaction.

To better understand which one of these factors is domi-
nant, and to improve the theory, we turn to another mean-field
approach based on the Hartree-Fock variational method.
Within this method, we look for the variational estimate of
the ground-state energy of the Hamiltonian (1) by using the
variational ansatz

|v〉 =
∫

dxφ1(x)φ̂†
x

∫
dx1...dxN

det[�ν (xη )]√
N!

N∏
η=1

�̂†
xη

|0〉 .

(23)
The minimization of the variational energy 〈v| H |v〉 with
respect to the orbitals φ1 and �ν (ν = 1, . . . , N), subject to
the normalization constraints, gives the set of N + 1 equations

−∂2
x φ1(x)/2m + gn(x)φ1(x) = ε1φ1(x), (24)

−∂2
x �ν (x)/2M + g|φ1(x)|2�ν (x) = Eν�ν (x), (25)

where n(x) = ∑N
ν=1 |�ν (x)|2 and all the orbital wave func-

tions are normalized. The Hartree-Fock procedure is very
simple in our case since the heavy fermions do not interact.
We solve Eqs. (24) and (25) iteratively. Namely, we pick an
initial guess for φ1(x) [we use Eq. (11)], diagonalize Eq. (25),
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FIG. 2. Left column: Cluster energies for N up to 5 obtained
by various methods. Solid curves correspond to the exact result,
solid gray to the prediction of the Thomas-Fermi method, dashed
to the Hartree-Fock approximation, and dotted to the Hartree-Fock
result with the second-order correction (see text). Right column:
ρN+1(q) normalized to 1 for the N + 1 clusters at M/m = 28.75,
corresponding to the 173Yb– 6Li mixture. The dots correspond to the
exact solution, gray curves to the Thomas-Fermi method, and dashed
curves to the Hartree-Fock method. The hexamer is not bound in the
Thomas-Fermi approach for the chosen mass ratio.

plug its N lowest (normalized) eigenstates into Eq. (24), and
solve for φ1. This procedure is repeated until convergence.
The variational energy is given by

〈v| H |v〉 = ε1 +
N∑

ν=1

Eν − g
∫

|φ1(x)|2n(x) dx. (26)

The cluster energies calculated by this procedure are shown
as dashed curves in the left panels of Fig. 2. We see that
the Hartree-Fock and Thomas-Fermi approaches give very
close results, and it seems that the first does not bring any
improvements over the second, even though it does not rely on
the local-density assumption for the kinetic energy. However,
the Hartree-Fock method provides us with the wave function
and gives us an access to the interparticle correlations, which
can be compared to the exact solution.

As a measure of these correlations, easily extracted from
all the considered methods, we take the quantity ρN+1(q) =∫ |F (q, q2, . . . , qN−1)|2 dq2 . . . dqN−1, which is the momen-
tum distribution of the remaining N − 1 heavy atoms once
a heavy-light pair is instantly quenched and removed from
the system (for instance, by using the photoassociation tech-
nique). In the Thomas-Fermi approximation, this quantity is
the momentum distribution of an ideal Fermi sea of den-
sity n(x), i.e., flat for −πn(x) < q < πn(x), averaged over
x. For q > 0 it is proportional to x(q/π ), where x(n) is the
inverse of n(x), and is given by Eq. (15) with φ expressed
through n by Eq. (6). In the right panels of Fig. 2 we show
ρN+1(q) extracted from the STM equation (dots), from the
Hartree-Fock wave function (dashed curves), and from the
Thomas-Fermi n(x) (gray solid curves) for various clusters
with M/m = 28.75, corresponding to the 173Yb– 6Li atomic
mixture. All the curves are normalized to 1.

We see that the Hartree-Fock approach well approximates
ρN+1(q), which suggests that this method provides a good
starting point for a more precise energy determination in a
computationally inexpensive manner. We note that the linear
Schrödinger operators on the left-hand sides of Eqs. (24) and
(25), with previously determined n(x) and |φ1(x)|2 playing
the roles of potentials, give us orthonormal single-particle
bases for the light and for the heavy atoms. One can thus
use them to enlarge the variational space. In principle, the
whole many-body Hilbert space of the N + 1 problem is
spanned by states obtained from |v〉 by promoting the light
atom and/or one or few of the heavy atoms into these ex-
cited orbitals. However, one can show that, in the resulting
Hamiltonian matrix, the state |v〉 is directly connected by
nonzero matrix elements only with states where the light
atom is excited to φi>1, and a single heavy atom is promoted
from �ν�N to �η>N . Treating these matrix elements as per-
turbations on top of the diagonal ones, we can calculate the
second-order correction to Eq. (26). The result is shown in
the left panels of Fig. 2 as dotted curves. We see that, by
accounting for pair excitations in this manner, the agreement
between the exact and the mean-field approaches improves,
also realizing a rather satisfactory cross-check between these
theories [18].

In conclusion, we solved the N + 1 cluster problem in free
space, exactly for N � 5, and by using two mean-field ap-
proaches valid asymptotically for N � 1. The Thomas-Fermi
density functional approach provides an analytic description
of the problem, predicting, in particular, scaling laws for
the thresholds and shapes of the clusters. The Hartree-Fock
variational method provides additional information on the
cluster structure (parity, for instance) and can be systemati-
cally improved. Our findings have implications for theoretical
studies of mass and population imbalanced Fermi-Fermi
mixtures and for experiments on the 173Yb– 6Li [19,20],
53Cr– 6Li [21], 40K– 6Li [22–24], and 161Dy– 40K [25,26]
mixtures. We also note that our free-space model corre-
sponds to the low-occupation and low-interaction limit of the
Fermi-Hubbard model with hopping asymmetry, for which
various many-body phases, such as the liquid of 2 + 1
trimers, were discussed and studied by using the Monte
Carlo, density matrix renormalization group, and bosonization
techniques [27–30].
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