Normal & Impaired Charge Transport in Biological Systems

John H. Miller, Jr.
M. Suárez Villagrán & S. Maric

Department of Physics &
Texas Center for Superconductivity
University of Houston

jhmiller@uh.edu

ECRYS-2014 – August 22, 2014
Introduction

• Biological charge transport
• Genetic code; Mutations
• Mitochondrial metabolic machines

Hole migration & mutations in DNA

• Hole on base \rightarrow Tautomerization \rightarrow Mutation
• Guanine mutations enhanced

Mitochondrial charge transport \rightarrow ATP

• Water channels; ATP synthase
• Mutations \rightarrow Impaired transport \rightarrow Diseases
• Complex I physics (known & unknown)
Ion channels
- > 300 types
- Often gated
- Ions: Cl\(^{-}\), K\(^{+}\), Na\(^{+}\), Ca\(^{2+}\), H\(^{+}\), etc.
- Drive action potentials (brain, heart, muscles, etc.)

Hole migration in DNA
- Role in mutations

Mitochondrial electron transport chain
- Electron tunneling
- Proton transport
- Effects of mutations
DNA base pair sequence encodes information

Purines: Guanine & Adenine
Pyrimidines: Cytosine & Thymine

Under normal circumstances: G pairs with C; A pairs with T.

jhmiller@uh.edu
DNA replication

Replication & repair enzymes →:

Part of double helix splits → 2 strands;
Complementary bases pair w/ parent strand bases.

Image from: http://genmed.yolasite.com/fundamentals-of-genetics.php
Transcription: DNA sequence portion (gene) \rightarrow mRNA.

Translation: mRNA \rightarrow amino acid sequence = protein. Proteins fold. What dictates higher level assembly?

Transcription factors + regulatory RNA’s + interactions + ???.

http://www.newworldencyclopedia.org/entry/Translation_(biology)
mRNA 3-letter code \rightarrow amino acid, start, or stop.

64 combinations, 21 amino acids;

Encoded by original DNA bases. **Copying error \rightarrow Mutation!**
Mitochondria have their own DNA molecules

Mitochondrial DNA \(\leftrightarrow\) high mutation rate.

- Oxidative damage
- Few repair mechanisms
- Many copies

mtDNA point mutations are implicated in:

- Neurodegenerative disorders
 - LHOP, NARP, Leigh syndrome, ALS, MELAS, AD/PD, etc.
- Age-related illnesses (somatic mutations)
 - Cancer
 - Type 2 diabetes
 - Heart disease

Physical mechanisms are largely unknown.
Guanine base substitutions most common in cancer.

Guanine sites act as potential wells for holes.

Above effects appear causally related
Possible mechanism ⇔ Tautomerization → mispair

Hole on guanine → Shift in hydrogen ion: $G \rightarrow G^*$.

G^* “incorrectly” pairs w/ $T \rightarrow G^*:T$.

$G^*:T$ replicates to “correct” but mutated pairing, $A:T$.

jhmill@uh.edu
$C_{m\sigma} \leftrightarrow$ hole destruction operator; N-N hopping: $t_x = 1.0$ eV, $t_y = 0.5$ eV.

$E_G = 7.75$ eV, $E_C = 8.87$ eV, $E_T = 9.14$ eV & $E_A = 8.24$ eV

Diagonalize Hamiltonian using actual mtDNA sequence \rightarrow Eigenenergies & eigenfunctions.
Hole Probabilities Near Mutation Site

before G \rightarrow A mutation

after G \rightarrow A mutation

Hole probabilities \sim mtDNA locus 3378 (cancer-implicated)

Which mutations “survive”?
Perverse Darwinian natural selection \leftarrow
Mutation survival in tumor \leftarrow
Amino acid replacement effects.
Effects of mtDNA point mutations

mtDNA base substitution \rightarrow Amino acid replacement in respiratory chain \rightarrow Altered function of mitochondrial machinery

Altered function of mitochondrial machinery
(e.g., impaired electron or proton transport) \rightarrow Reduced oxidative ATP production
Increased ROS \rightarrow Upregulation of key enzymes
Growth advantage
Enhanced tumorigenesis
Metastatic potential

In the case of cancer.
Hypotheses

• Some mtDNA mutations disrupt proton or electron transport by altering water channels.

• mtDNA mutations in cancer “optimally” affect charge transport: \(\uparrow \) reactive oxygen species \(\rightarrow \) \(\uparrow \) certain enzymes (e.g. HK2).
Mitochondrial Electron Transport Chain

NADH → NAD⁺
Complex I

Inside the matrix

Complex III

Complex IV

Cytochrome c

Quinone pool

e⁻ → e⁻

ADP + Pᵢ → ATP

H⁺

O₂

H₂O

ATP Synthase (F₀F₁)

F₁

F₀

H⁺

Courtesy of Peter L. Pedersen (Johns Hopkins, 2007)
ATP Synthase
Electric field driven torque in ATP synthase

\[\tau = \frac{ne}{2\pi} \Delta p \]

The Mitochondrial Genome:
mtDNA = 37 genes
Extra-cellular plasmids (chromosomes) ~ 1500 genes

ATP Synthase α-subunit sequence homology:
H. sapiens vs. *E. coli*
Fo-ATP Synthase ac complex
MD simulations via NAMD

Sladja Maric
Proton conducting water channels

Normal (wild-type)
Mutated (8993 T → G)
Leucine → Arginine @ 207
Coupling of water to proton-binding sites

Normal (wild-type) Mutated (8993 T → G)
Leucine → Arginine @ 207
Proton conducting water channels (L207P)

8993 T→C mutation: NARP, Leigh syndrome
Side views: 207, R210, Asp61 (c-ring)

Wild Type

L207R mutant

L207P mutant
Top views: 207, R210, Asp61 (c-ring)

Wild Type

L207R

L207P
Complex I; Respirasome Supercomplex

Electron transport in respirasome

Speculative model of complex I function

Water channel formation in complex I

Quantum “Goldilocks” effect for electron transport?
Mitochondrial Complex I
Respirasome Supercomplex

Genova et al., *BBA* 1777, 740 ('08)

Lenaz et al., *AJP-Cell Physiol.* 292, C1221 ('07)

EM database EMD-1318
http://www.ebi.ac.uk/msd/index.html
Electron Pathways in Respiratory Chain

Moser et al., BBA 1757, 1096 (’06)
Theory (state 3): Diffusion of CoQ e^- carriers.

Theory (state 3): Channeling of e^-'s: I \rightarrow III via CoQ.

Lenaz et al., *AJP-Cell Physiol.* 292, C1221 (’07)

Genova et al., *BBA* 1777, 740(’08)
“…Complex I & Complex III behave as a single enzyme …”
Electron Transfer in Mitochondrial Complex I

Lenaz & Genova, *Antioxid. Redox Signal.* **12**, 961 (’10)
Electron Tunneling in Mitochondrial Complex I

Hayashi & Stuchebrukhov, *PNAS*, 2010
Schematic of Complex I
Complex I: Possible proton transport mechanism
Quantum “Goldilocks” effect for electron transport?

- Why is optimum body temperature in narrow range ~ 37°C?
- Perhaps to optimize electron transport rates: thermal fluctuations overcome localization w/o destroying quantum coherence.
 - Interplay between coherence & decoherence ⇔ “just right.” (Seth Lloyd)

Thank you!

Special thanks to:
Martha Suárez Villagrán, PhD
Sladjana (Sladja) Maric
Rooplekha Mitra
Prof. James M. Briggs

(Braes Bayou, Houston, Texas)

Dale J. Hamilton, MD