

Exploring the phase-diagram of molecular crystals during ultrafast photo-induced non-equilibrium dynamics

<u>Roman Bertoni</u>, Materials & Light Team

University Rennes 1, Institut de Physique de Rennes

ECRYS 2022, Cargese, 8 - 20 August 2022

Acknowledgments

Materials & Light team

- Nicolas Godin
- Jean-Claude Ameline
- Ela Trzop
- Gaël Privault
- Guénolé Huitric
- Marius Hervé
- Giovanni Azzolina

Physics of Materials & Nanostructures

- Etienne Janod
- Zohra Khaldi
- Julien Tranchant
- Laurent Cario
- Benoit Corraze

Division of Chemistry

- Mitsuhiko Maesato
- Gunzi Saito

Ultrafast photo-induced dynamics of materials

- Goal
 beyond the sole use of temperature as external thermodynamical control parameter
- Exploring the Pressure Temperature Phase Diagram of Molecular Material
- Seek for peculiar the Photo-Induced Dynamics in well defined parts of the Phase Diagram

Optical Setup

Supercontinuum/White light Spectroscopy

- (470-750 nm)
- Time resolution ~ 100 fs
- Sensitivity ~ 0.1 mOD (10⁻⁴)
- Pump (450-2200 nm) → 800 nm

With courtesy of G. Azzolina

High Pressure Setup

Already used in pump-probe experiments with diamond anvil cell (lesser control)

UNIVERSITÉ DE **RENNE**

o-7 kbars (o-o.7 Gpa) 10-300 K 250-5000 nm

Multi-stages He gas based cell

Specifications:

- Precision of few bars (measure in operando)
- Ramping up/down of few bars per minutes
- Sapphire windows allowing optical Transmission/Reflection

High Pressure Setup

Already used in pump-probe experiments with diamond anvil cell (lesser control)

Multi-stages He gas based cell

UNIVERSITÉ DE RFNN

250-5000 nm

Specifications:

- Precision of few bars (measure in operando)
- Ramping up/down of few bars per minutes •
- Sapphire windows allowing optical Transmission/Reflection ٠

V₂O₃ Phase Diagram

Creater

First a "*counter"* example: V2O3 \implies Benchmark of Mott physics

UNIVERSITÉ DE RENNE

- Pure V2O3 without chemical substitution is a Paramagnetic "bad" Metal (PM) under standard thermodynamical conditions
- No expected phase transition under hydrostatic pressure
- Thin film of ~ 190 nm thickness

Inorganic materials \implies needs of several GPa (ten's of kbars)

D. B. McWhan et al , *Phys. Rev. B* , 7, 1920-1931 (1973)

Pump 800 nm

G. Huitric et al, Faraday Discussion (2022)

G. Privault et al, *submitted*

Reflectivity

Pump 800 nm

Phonon potential

No apparent shift in A_{1q} frequency

No observable modification of the A_{1q} phonon potential (o-6 kbars)

Normalized transient transmission at 650 nm

Shift of the rising time and oscillations (arrows) related to strain propagation effect:

Impact on speed of sound

Acoustic properties

Blue shift of the "Brillouin" frequency under pressure Increase of speed of sound / stiffening

Even in inorganic V2O3, pressure below GPa acts on acoustic properties: may impact photo-induced strain effects

CINIC

MOC: Molecular Conductors

System displaying Metal to Insulator (MIT) Phase Transition

Low Temperature Phase

Tentative Phase Diagram of (EDO-TTF)-XF₆

1st Order Phase Transition

M. Maesato et al, J. of Phys.: Conference Series 148 (1), 012004, (2009)

40

30

a)

UNIVERSITÉ DE

RENNES

Related to the collapse of electronic charge order.

Strongly related to atomic structure as coherent phonons modulate reflectivity up to 10 %

AR/R (%) 20 10 0 -2 0 2 4 6 Time (ps) 1.0 i) 0.8 0.6 0.4 0.2

0.0

M. Servol et al, *Phys. Rev. B*, 92(2) 024304 (2015)

3

Frequency (THz)

2

rontières

pump=1.46 eV

probe=1.72 eV

230 K

230 K

5

8

M. Chollet et al, Science, 307 (5706) 86 (2005)

Ambient Pressure P-I dynamics in (EDO-TTF)-XF₆

Pump 800 nm

Broadband reflectivity changes after 800 nm pumping

Ambient Pressure P-I dynamics in (EDO-TTF)-XF₆

CI

Pump 800 nm

800 nm pumping

Ambient Pressure P-I dynamics in (EDO-TTF)-XF₆

Culticas

Transient reflectivity at 660 nm

Model with bi-exponential decay:

- 250 fs, electron-electron?
- 1.3 ps, electron-phonon?

Relaxation of excited carriers

High Pressure P-I dynamics in (EDO-TTF)-XF₆

picosecond timescale / 3000 bars

Broadband reflectivity changes after 800 nm pumping

High Pressure P-I dynamics in (EDO-TTF)-XF₆

800 nm pumping

High Pressure P-I dynamics in (EDO-TTF)-XF₆

FFT at several wavelengths:

L'antières

- Observation of several modes (1THz, 2THz)
 - Match the thermally driven case

High Pressure P-I dynamics in (EDO-TTF)-XF₆

E // to stacking axis

 $E \perp to stacking axis$

anisotropic response expected for 1 D conductors

acoustic timescale / 1 bar

UNIVERSITÉ DE **RENNES**

Broadband reflectivity changes after 800 nm pumping

Time Dependent Brillouin Scattering in (EDO-TTF)-XF₆

Broadband reflectivity changes after 800 nm pumping

UNIVERSITÉ DE **RENNE**

T. Parpiiev et al , *Appl. Phys. Lett.* , 111, 151901 (2017)

Time Dependent Brillouin Scattering in (EDO-TTF)-XF₆

UNIVERSITÉ DE

Broadband reflectivity changes after 800 nm pumping

Increase of Brillouin frequency F_B:

• 5.5 GHz (1 bar) to 15 GHz (5500 bars)

Photo-induced strain effects

Article | Open Access | Published: 23 February 2021

Strain wave pathway to semiconductor-to-metal transition revealed by time-resolved X-ray powder diffraction

Acoustic/strain processes might be relevant in the establishment of a new macroscopic phase and likely to occur in the 10 to 100 ps timescale

T. Ishikawa et al , *Crystals*, 2(3), 1067 (2012)

UNIVERSITÉ DE

C. Mariette et al , *Nat Com*, 12(1), 1-11 (2021)

- Broadand ultrafast optical spectroscopy under high pressure (o-6kbars)
- Time resolution as good as ~100 fs
- Observation of coherent optical phonons and thermo-elastic processes
- Strong modification of (v/n) in molecular materials