

The normal state of YBa₂Cu₃O_{7-x}

ELIZABETH BLACKBURN, ECRYS 2022, 2022-08-16

Acknowledgements

NEUTRONS FOR SOCIETY

PAUL SCHERRER INSTITUT

Ted Forgan

Jonathan White

Bob Cubitt

Alex Holmes

Stephen Hayden

Johan Chang

Oleh Ivashko Martin von Zimmerman

Ruixing Liang Doug Bonn Walter Hardy

Zürich

EUROPEAN

SPALLATION SOURCE

Outline – experimental data from YBCO

- Introduction to YBCO
- The vortex lattice at high magnetic fields
 - introducing the vortex lattice
 - how does it normally behave?
 - deviations from the London model
- Looking for a diffraction signature from the pair density wave
 - introducing the pair density wave
 - trying to find a diffraction signal

Outline – experimental data from YBCO

- Introduction to YBCO
- The vortex lattice at high magnetic fields
 - introducing the vortex lattice
 - how does it normally behave?
 - deviations from the London model
- Looking for a diffraction signature from the pair density wave
 - introducing the pair density wave
 - trying to find a diffraction signal

Cuprate phase diagram

Wahl, Nature Physics (2012)

Electronic instabilities in the cuprates

Sato et al., Nature Physics 13, 1074 (2017)

phase as $T \rightarrow 0$, as measured from high-field resistivity data

Underdoping to overdoping

Doiron-Leyraud et al., Nature (2007); Plate et al., PRL (2005); Shen et al., Science (2005)

Introduction to YBa₂Cu₃O_{7-d} (YBCO)

Copper-Oxygen Planes

Barisic et al., PNAS (2013)

Oxygen ordering in YBCO – the chains

Ghiringhelli et al., Science 337, 821 (2012)

Andersen *et al.,* Physica C **317**, 259 (1999).

Electronic instabilities in the cuprates

Outline – experimental data from YBCO

- Introduction to YBCO
- Looking for a diffraction signature from the pair density wave
 - introducing the pair density wave
 - trying to find a diffraction signal
- The vortex lattice at high magnetic fields
 - introducing the vortex lattice
 - how does it normally behave?
 - deviations from the London model

What are pair density waves?

A pair density wave is a superconducting state in which the order parameter varies periodically as a function of position in such a way that its spatial average vanishes.

Agterberg et al., Annu. Rev. CMP 11, 231 (2020)

a) FFLO superconductor

The PDW state does not necessarily break time-reversal symmetry

STM data – the PDW seen in field

S. D. Edkins et al., Science 364, 976 (2019).

The right hand plot is obtained from data measured at 8.25 T, with the 0 T data subtracted.

What can we see with X-rays?

For the charge density wave, the X-rays are scattered by the electrons, and so we are sensitive to spatial variation in the electron density.

The high energy X-rays are more sensitive to (induced) atomic displacements than purely charge displacements.

 \rightarrow not directly sensitive to the pair density wave

STM data – the PDW seen in field

S. D. Edkins et al., Science 364, 976 (2019).

The right hand plot is obtained from data measured at 8.25 T, with the 0 T data subtracted.

Where to look in reciprocal space?

Forgan *et al.*, *Nature Comms* **6**, 10064 (2015).

Where to look in reciprocal space?

* no clear CDW signal

We also need high field

P07 @ PETRA

Liang, Bonn, Hardy

CDW order in a large B field

Chang et al., Nature Comms 7, 11494 (2016).

Chain order signal Subtract off 0 T

CDW order in a large B field

Chang et al., Nature Comms 7, 11494 (2016).

Correlation lengths (0 T): $\xi_a = 95 \text{ Å}$ $\xi_c \approx 0.6 \text{ c}$ Correlation lengths (16 T): $\xi_a = 310 \text{ Å}$ $\xi_c \approx 4 \text{ c} (47 \text{ Å})$

Where to look for the PDW in Q space?

Example data at (0 K 0.5) and (0 K 1) - 3 K

Example data at (0 K 0.5) and (0 K 1) - 3 K

Along the a^* axis – (H 0 L) - 3 K

(0 K 1) – 16 T, 3 K

Width \sim 3 x the CDW peak

Conclusions

A diffraction signature from the pair density wave?
➤ not seen - Δ₀ at least one order of magnitude smaller than Δ₁ = Δ_{PDW} in YBCO ortho-II

 $\rho_e(r) \propto (\Delta_0^2 + 2\Delta_0\Delta_1\sin(qr) + \Delta_1^2\sin^2(qr))$

Outline – experimental data from YBCO

- Introduction to YBCO
- Looking for a diffraction signature from the pair density wave
 - introducing the pair density wave
 - trying to find a diffraction signal
- The vortex lattice at high magnetic fields
 - introducing the vortex lattice
 - how does it normally behave?
 - deviations from the London model

Vortices in Type-II superconductors

Meissner-Ochsenfeld effect

Vortices in superconductors

Review of STM imaging of vortices Suderow *et al.*, Supercond. Sci. Tech. **27**, 063001 (2014).

Diffraction from the vortex lattice

We can measure this using small angle neutron diffraction.

The form factor as a function of field

London Model

$$F(q)_{ ext{London}} = rac{B}{1+(\lambda q)^2}.$$

For $B_{c1} < B << B_{c2}$, the London model gives:

... where λ_L is the magnetic penetration depth, and $\lambda_L = 2500$ Å $<=>F_{10} \sim 0.7$ mT

The form factor as a function of field

Brandt Model

$$F(q)_{\mathsf{Brandt}} = rac{B}{1+(\lambda q)^2} e^{-c(\xi q)^2}$$

Brandt, Rep. Prog. Phys. **58**, 1465 (1995) Brandt, Phys. Rev. Lett. **78**, 2208 (1997)

R. Morisaki-Ishii, et al., Phys. Rev. B, 90, 125116 (2014).

YBCO7 – fully occupied chains

White et al., Phys. Rev. Lett. 102, 097001 (2009)

The form factor of the VL in YBCO

White et al., Phys. Rev. B. 84, 104519 (2011)

Campillo et al., Phys. Rev. B. 105, 184508 (2022)

Explanations?

• The superconducting characteristic lengths are changing. The penetration depth changes with field.

Amin et al., Phys. Rev. Lett. 84, 5864 (2000)

Explanations?

• The superconducting characteristic lengths are changing. The coherence length should also change with field.

Explanations?

• Additional magnetization in the core (e.g. Pauli paramagnetic effects)

Data from DeBeer-Schmitt et al., PRL 99, 167001 (2007).

Conclusions

A diffraction signature from the pair density wave?
➤ not seen - Δ₀ at least one order of magnitude smaller than Δ₁ = Δ_{PDW} in YBCO ortho-II

 $\rho_e(r) \propto (\Delta_0^2 + 2\Delta_0 \Delta_1 \sin(qr) + \Delta_1^2 \sin^2(qr))$

• The vortex lattice at high magnetic fields

