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Warning: I am not really a specialist of a particular material…

Based on my (possibly wrong) understandings on materials/experiments.
(although I consulted with many experimentalists)



Exploring Electronic Properties of Quasi-1d Systems 

Flat bands, superconductivity, topological states & Non-Fermi liquids 

Goal:



The pattern that captured my eyes:
Experiments: STM on nearly-commensurate charge-density wave in 1T-TaS2

Phase diagram 
[Sipos et. al. Nat. Mat. (2008)]
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The pattern that captured my eyes:

[Ref. JW Park, GYC, J Lee, HW Yeom, Nat. Comm. (2019)]

Experiments: STM on nearly-commensurate charge-density wave in 1T-TaS2

Phase diagram 
[Sipos et. al. Nat. Mat. (2008)]

HW Yeom
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1. Lateral size of domain wall network ~ O(80) A.

2. Only domain walls are metallic.

What’s the electronic structure? Why superconducting?

Can it be topological? 

Any correlation-driven phenomena?

GYC, Soto-Garrido, Fradkin, Phys. Rev. Lett. (2015) 

Cf: certain density waves can be topological, too. 



To the 1st order approximation:

Problem: 1D mobility of electrons, combined with 2D superstructures.
[Lee, Geng, Park, Oshikawa, Lee, Yeom, GYC*, Physical Review Letters (2020)]



Patterned Network on Graphene
[Forsythe et.al. Nano Lett (2018)]

Twisted Bilayer Graphene Moiré MoSe2
[Yoo et.al. Nat. Matt. (2019)] [Ma et.al. ACS Nano (2019)]

This structure is more common than one naively thinks:

More interesting examples?



[Ref. Li et.al., Nat. (2016)] [Ref. Kusmartseva et. al. PRL (2009)]

1. Non-Fermi Transport 𝑹𝑹 ~ 𝑹𝑹𝟎𝟎 + 𝑨𝑨 𝑻𝑻𝒏𝒏, varying exponent 𝒏𝒏 ≈ 𝟏𝟏~𝟑𝟑

Experiments: 1T-TiSe2

2. Emerging superconductivity, and domain wall networks (Little-Park effect)

Correlation effect seems important in these materials!



Cam we explain these?
[1] Park, GYC, Lee, Yeom*, Nature Communications (2019)
[2] Lee, Geng, Park, Oshikawa, Lee, Yeom, GYC*, Physical Review Letters (2020)
[3] Lee, Oshikawa, GYC*, Physical Review Letters (2021)



To the 1st order approximation:

Problem: 1D mobility combined with 2D superstructures.

[Lee, Geng, Park, Oshikawa, Lee, Yeom, GYC*, Physical Review Letters (2020)]



Key observation: Dimensional Crossover TX

𝒍𝒍𝑾𝑾

Wire length 𝒍𝒍𝑾𝑾 vs. Thermal coherence 𝒍𝒍𝒌𝒌𝑩𝑩𝑻𝑻 = ℏ𝒗𝒗𝑭𝑭
𝒌𝒌𝑩𝑩𝑻𝑻

𝑻𝑻
𝑻𝑻𝑿𝑿

2d Physics 1d Physics

[Lee, Oshikawa, GYC, PRL (2021)][Lee, Geng, … GYC, PRL (2020)]

𝒍𝒍𝒌𝒌𝑩𝑩𝑻𝑻 = 𝒍𝒍𝑾𝑾

(𝑙𝑙𝑘𝑘𝐵𝐵𝑇𝑇 < 𝑙𝑙𝑊𝑊)(𝑙𝑙𝑘𝑘𝐵𝐵𝑇𝑇 > 𝑙𝑙𝑊𝑊)

[Lee, Oshikawa, GYC*, Phys. Rev. Lett. 126, 186601 (2021)]
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[Lee, Oshikawa, GYC, PRL (2021)][Lee, Geng, … GYC, PRL (2020)]

𝒍𝒍𝒌𝒌𝑩𝑩𝑻𝑻 = 𝒍𝒍𝑾𝑾

(𝑙𝑙𝑘𝑘𝐵𝐵𝑇𝑇 < 𝑙𝑙𝑊𝑊)(𝑙𝑙𝑘𝑘𝐵𝐵𝑇𝑇 > 𝑙𝑙𝑊𝑊)

[Lee, Oshikawa, GYC*, Phys. Rev. Lett. 126, 186601 (2021)]

- TiSe2: O(10)K (assuming e.g. that the electrons are flowing along 1D domain walls)

- Twisted bilayer graphene: O(50)K (for 140 nm)

- TaS2: O(100)K

Why this is important? 

1D Physics is dominated by non-Fermi liquids, a.k.a. Luttinger liquid.

Low-T and high-T should be differently accessed in theory. 



Key observation: Dimensional Crossover TX
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[Lee, Oshikawa, GYC, PRL (2021)][Lee, Geng, … GYC, PRL (2020)]

𝒍𝒍𝒌𝒌𝑩𝑩𝑻𝑻 = 𝒍𝒍𝑾𝑾

(𝑙𝑙𝑘𝑘𝐵𝐵𝑇𝑇 < 𝑙𝑙𝑊𝑊)(𝑙𝑙𝑘𝑘𝐵𝐵𝑇𝑇 > 𝑙𝑙𝑊𝑊)

[Lee, Oshikawa, GYC*, Phys. Rev. Lett. 126, 186601 (2021)]

- TiSe2: O(10)K (assuming e.g. that the electrons are flowing along 1D domain walls)

- Twisted bilayer graphene: O(25)K (for 300 nm)

- TaS2: O(100)K

Relatively easier problem.



2D limit: 𝑻𝑻 < 𝑻𝑻𝑿𝑿



2D limit: Cascade of stable flat bands & Superconductivity

1. Not only one, but many, many flat bands. 

2. Flatness is stable, i.e. protected by locality, time-reversal & crystal symmetry.

Stability = relevance to the real, experimental systems!

(with realistic parameters, geometry)

[Lee, Geng, Park, Oshikawa, Lee, Yeom, GYC*, Phys. Rev. Lett. 124, 137002 (2020)] eV
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Of course, flat band is not new. 
1. Kagome Lattice

- Single flat band

- NN-Hopping Only

2. Lieb Lattice

- Single flat band

- NN-Hopping

(sublattice symmetric hopping)

What’s new in our model is:

1. Multiple, not just one, Flat bands 

2. Unusual Stability & Protecting symmetries

Easier to observe the physics of flat bands without much tuning



Emergence of flat bands & their stability
Numerics: flat band states have Ψ x = 0 at the nodes.

Standing waves inside each wire.

+t

-t
+1 -1

-1

[Cf. Bergman, Wu, Balents 2008]

Hence, flat bands are protected by:

(1) [Locality] Hopping is shorter than wire length [~ 80A in 1T-TaS2]

(2) [Symmetry] 𝐷𝐷6 × 𝑇𝑇 symmetry

(3) Multiple standing waves = Repeated, Multiple flat bands

[Lee, Geng, Park, Oshikawa, Lee, Yeom, GYC*, Phys. Rev. Lett. 124, 137002 (2020)]
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Broad range of s-wave SC & Ferromagnetism



2D limit: “Higher-order” topology
LDOS peak ?

[Ref: Cho et al, Nat. Comm.(2017)]

[Lee, Geng, Park, Oshikawa, Lee, Yeom, GYC*, Phys. Rev. Lett. 124, 137002 (2020)]



2D limit: “Higher-order” topology
LDOS peak ?

[Ref: Yeom’s group, Nat. Comm.(2017)]Hidden Higher-order Topology 

Domain wall networks provide a natural platform for “higher-order” topology.
(when gapped)

[Lee, Geng, Park, Oshikawa, Lee, Yeom, GYC*, Phys. Rev. Lett. 124, 137002 (2020)]

This looks very similar to the corner state of the higher-order TI 

…which one can actually make a more precise connection.
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[Ref: Yeom’s group, Nat. Comm.(2017)]Hidden Higher-order Topology 

Domain wall networks provide a natural platform for “higher-order” topology.
(when gapped)

[Lee, Geng, Park, Oshikawa, Lee, Yeom, GYC*, Phys. Rev. Lett. 124, 137002 (2020)]

This looks very similar to the corner state of the higher-order TI 

…which one can actually make a more precise connection.

Triptycene (Hatsugai’s group, Phys. Rev. Mat. 2019)



2D limit: “Higher-order” topology
LDOS peak ?

[Ref: Yeom’s group, Nat. Comm.(2017)]Hidden Higher-order Topology 

Domain wall networks provide a natural platform for “higher-order” topology.
(when gapped)

[Lee, Geng, Park, Oshikawa, Lee, Yeom, GYC*, Phys. Rev. Lett. 124, 137002 (2020)]



2D limit: Higher-order topology
LDOS peak ?

[Ref: Yeom’s group, Nat. Comm.(2017)]Hidden Higher-order Topology 

Domain wall networks provide a natural platform for higher-order topology.
(when gapped)

[Lee, Geng, Park, Oshikawa, Lee, Yeom, GYC*, Phys. Rev. Lett. 124, 137002 (2020)]

Lee, Park, GYC, Yeom, submitted to PRL 

HW Yeom
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Key observation: Dimensional Crossover TX
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2d Physics 1d Physics

[Lee, Oshikawa, GYC, PRL (2021)][Lee, Geng, … GYC, PRL (2020)]

𝒍𝒍𝒌𝒌𝑩𝑩𝑻𝑻 = 𝒍𝒍𝑾𝑾

(𝑙𝑙𝑘𝑘𝐵𝐵𝑇𝑇 < 𝑙𝑙𝑊𝑊)(𝑙𝑙𝑘𝑘𝐵𝐵𝑇𝑇 > 𝑙𝑙𝑊𝑊)

- Cascades of stable flat bands 

- Superconducting instabilities & experimental implications
- Higher-order topology & STM experiments

Relatively easier problem.

[Lee, Geng, Park, Oshikawa, Lee, Yeom, GYC*, Phys. Rev. Lett. (2020); Lee, Park, GYC, Yeom, submitted to Phys. Rev. Lett.]



1D limit: 𝑻𝑻 > 𝑻𝑻𝑿𝑿



Key observation: Dimensional Crossover TX
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[Lee, Oshikawa, GYC, PRL (2021)][Lee, Geng, … GYC, PRL (2020)]

𝒍𝒍𝒌𝒌𝑩𝑩𝑻𝑻 = 𝒍𝒍𝑾𝑾

(𝑙𝑙𝑘𝑘𝐵𝐵𝑇𝑇 < 𝑙𝑙𝑊𝑊)(𝑙𝑙𝑘𝑘𝐵𝐵𝑇𝑇 > 𝑙𝑙𝑊𝑊)

[Lee, Oshikawa, GYC*, Phys. Rev. Lett. 126, 186601 (2021)]

- TiSe2: O(10)K (assuming e.g. that the electrons are flowing along 1D domain walls)

- Twisted bilayer graphene: O(25)K (for 300 nm)

- TaS2: O(100)K

What do we expect?



Quasi-1D: Plethora of Non-Fermi Liquids above TX

Dimensionally 

1D & 0D systems

For 𝑻𝑻 > 𝑻𝑻𝑿𝑿:

Luttinger Liquids 

& Junctions 

[Lee, Oshikawa, GYC*, Phys. Rev. Lett. 126, 186601 (2021)]



Quasi-1D: Plethora of Non-Fermi Liquids above TX

“Fixed Points” 

of an Y-junction
2D NFLs 

(1) Electric conductivity

𝒈𝒈 𝑻𝑻 ∼ 𝒈𝒈𝟎𝟎 + 𝒄𝒄 𝑻𝑻𝜶𝜶 𝑲𝑲

…where 𝑔𝑔0,𝛼𝛼(𝑲𝑲) are universal.

[Oshikawa, Chamon, Affleck (2005)] 

Dimensionally 

1D & 0D systems

For 𝑻𝑻 > 𝑻𝑻𝑿𝑿:

Luttinger Liquids 

& Junctions 

(2) Exotic states
- Emergent nematic phase
- Spin-charge separation

[Lee, Oshikawa, GYC*, Phys. Rev. Lett. 126, 186601 (2021)]

- Classification is possible.

(e.g. triangular ~ 220 types)



Toy Model: strange insulator phase

𝒈𝒈 𝑻𝑻 ≈ 𝒈𝒈𝟎𝟎 + 𝒄𝒄 𝑻𝑻𝜶𝜶 𝑲𝑲

0

𝟐𝟐𝑲𝑲 − 𝟐𝟐

[Lee, Oshikawa, GYC*, Phys. Rev. Lett. 126, 186601 (2021)]



Toy model: repulsive, spinless electrons

Luttinger liquid: 𝐻𝐻 =
𝑣𝑣
2
�𝑑𝑑𝑑𝑑

1
𝐾𝐾

𝜕𝜕𝑥𝑥𝜃𝜃 2 + 𝐾𝐾 𝜕𝜕𝑥𝑥𝜙𝜙 2

(Luttinger parameter 𝑲𝑲 > 𝟏𝟏, repulsive)

Weak junction interactions

Q. What would happen

if the temperature gets lowered?

A. System evolves along the RG flow. 



Toy model: repulsive, spinless electrons

Decoupled fixed point emerges.

(Cf. it is also known as Neumann BC)

What do we expect out of this fixed point?

(1) Electrically insulating for 𝑻𝑻 > 𝑻𝑻𝑿𝑿.

- Even the electron hopping is irrelevant (!)

(2) Thermodynamically metal

- Luttinger liquid excitations are intact. 

Electric conductivity in temperature T?



𝑰𝑰𝒂𝒂 = �
𝒃𝒃

𝑮𝑮𝒂𝒂𝒃𝒃𝑽𝑽𝒃𝒃

Conductance of the junction

Key observations: 

(1) 𝐺𝐺𝑠𝑠 and 𝐺𝐺𝐴𝐴 are determined by the fixed point of the 0D junction

(2) 𝐺𝐺𝑠𝑠 and 𝐺𝐺𝐴𝐴 determine the 2D conductivity:

𝒈𝒈𝒙𝒙𝒙𝒙 𝑻𝑻 = 𝟑𝟑
𝑮𝑮𝒔𝒔 𝑻𝑻
𝟒𝟒

𝒈𝒈𝒙𝒙𝒙𝒙 𝑻𝑻 =
𝑮𝑮𝑨𝑨 𝑻𝑻
𝟒𝟒

&

(𝑔𝑔𝑎𝑎𝑎𝑎 = “macroscopic” data, 𝐺𝐺𝑆𝑆/𝐴𝐴 = “microscopic” data)

Relating “microscopic” junction to “macroscopic” network



Toy model: repulsive, spinless electrons

Decoupled fixed point emerges.

(Cf. it is also known as Neumann BC)

𝐠𝐠𝐱𝐱𝐱𝐱 𝐓𝐓 ≈ 𝟎𝟎 +
3𝜋𝜋𝑒𝑒2𝑡𝑡2

2ℎ
𝜏𝜏𝑐𝑐2𝐾𝐾

𝜋𝜋2𝐾𝐾−1 Γ 1
2 Γ 𝐾𝐾

Γ 1
2 − 𝐾𝐾

𝑻𝑻𝟐𝟐𝑲𝑲−𝟐𝟐

𝐠𝐠𝐱𝐱𝐱𝐱 𝐓𝐓 ≈ 𝟎𝟎 + 𝑶𝑶 𝑻𝑻𝟐𝟐𝑲𝑲−𝟐𝟐

(for 𝑲𝑲 > 𝟏𝟏)

Perturbative expansions to the leading order are… 

Determined by the leading irrelevant operator at the fixed point

(universal data of the fixed point)

For this “decoupled” fixed point, 𝚫𝚫 = 𝑲𝑲 𝜹𝜹𝒈𝒈 ∼ 𝑻𝑻𝟐𝟐𝚫𝚫−𝟐𝟐



Toy model: repulsive, spinless electrons

𝑹𝑹 𝑻𝑻 ∼
𝟏𝟏
𝑻𝑻𝟐𝟐∆

We have achieved a microscopic model

of strange insulator behaviors!

(AdS/CFT duality)



Experiment in graphene ? 𝑇𝑇𝑋𝑋 ∼ 50𝐾𝐾

Hopefully to see this in the future experiments

(cf. Phonon effects) 
(for 140 nm)



Remark:
In all cases, we find:

g T ≈ 𝐠𝐠𝟎𝟎 + 𝑐𝑐 𝑇𝑇𝜶𝜶 𝑲𝑲

Universal conductance of the junction 

(determined by the junction BCs)

Power-law correction in temperature T

(fixed by the leading irrelevant operator)

“K” is the exactly marginal parameter.

This will continuously evolve when experimental parameters, 

e.g., gating or pressure, are changed.  

This is markedly different from a regular 2D Fermi liquid!
[Lee, Oshikawa, GYC*, Phys. Rev. Lett. 126, 186601 (2021)]



[Ref. Li et.al., Nat. (2016)] [Ref. Kusmartseva et. al. PRL (2009)]

1. Non-Fermi Transport 𝑹𝑹 ~ 𝑹𝑹𝟎𝟎 + 𝑨𝑨 𝑻𝑻𝒏𝒏, varying exponent 𝒏𝒏 ≈ 𝟏𝟏~𝟑𝟑

2. Emerging superconductivity, and domain wall networks (Little-Park effect)

Correlation effect seems important in these materials!

Strongly Reminiscent of Experiments… 



Conclusions



Key observation: Dimensional Crossover TX

𝒍𝒍𝑾𝑾

𝑻𝑻
𝑻𝑻𝑿𝑿

2d Physics 1d Physics

[Lee, Oshikawa, GYC, PRL (2021)][Lee, Geng, … GYC, PRL (2020)]

𝒍𝒍𝒌𝒌𝑩𝑩𝑻𝑻 = 𝒍𝒍𝑾𝑾

(𝑙𝑙𝑘𝑘𝐵𝐵𝑇𝑇 < 𝑙𝑙𝑊𝑊)(𝑙𝑙𝑘𝑘𝐵𝐵𝑇𝑇 > 𝑙𝑙𝑊𝑊)

- Cascades of stable flat bands 

- Superconducting instabilities & experimental implications
- Higher-order topology & STM experiments

Relatively easier problem.

- Non-Fermi liquids (high-T regime)



If there’s 1 min… 



Steady non-equilibrium quantum states:

Upshot: graphene + continuous irradiation of microwaves = steady Floquet states 

Diagnostics of steady states: spectral sum rules

~𝑶𝑶(𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏) longer life time than previous pulse-generated Floquet states 

𝛽𝛽 = 𝑒𝑒𝑣𝑣𝐹𝐹 |𝑬𝑬|/ℏ𝝎𝝎

~250 ps> 25 hr

[Park, Lee, (…), GYC, Lee, Nature (2022)]
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