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THE BIRTH OF IMAGE FORCES

William Thomson (Later Lord Kelvin), The Cambridge and Dublin Mathematical Journal,
Volume 111 (Macmillan, Barclay, and Macmillan, Cambridge, 1848), pages 141-148, with
reference to his lectures and partially unpublished works of Joseph Liouville.

* The investigations given in this paper form the subject of the first
of & series of lectures on the Mathematical Theory of Electricity, given

mn the University of G during the present session. T are adap-
tations of certain methods of proot which first ocourred to me as tions
of the principls of electrical images, made with a view to investigating the
solutions of various problems regarding spherieal conductors, without the
explicit use of the differentinl or integral caleulus. The epirit, if not the
notation, of the differential calculus must enter into any investigations with
reference to Green's of the potential, and there a more extended
view of the subject is reserved for & second part of the course of lectures,
L.mmp]ateatpmiﬁmufthnpﬁnﬂ?p#n?‘m emages (of which a short
account was read at the late meeting of the British Association at Oxford)
has not yet been published ; but an outline of it was communicated by me
to M. Liouwille, in three letters of which extracts are published in the
Journal da ;i (1845 and 1847, Vole, x. and x11,) A full and

L]

elegant exposition of the method indicated, together with some highl
inter :pﬁuﬁm to problems in geometry not contemplated by mg,
are given by .Hﬂﬂ?ﬂ]lﬂmﬁdﬂ in an article written with reference to
those letters, and published along with the last of them. I cannot neglect
the rm;omlmt]dEI ing my thanks for the honour which has
thus upon me by ao inguished a mathematician, as well
aa for the kind manner in which he received those communications, imper-
feot as they were, and for the favourable mention made of them in his own
valuable memoir,

12. Theorem.* The attraction of a uniform spherical sur-
face on an external point is the same as if the whole mass
were collected at the centre.

The method of images concerns itself with the problem of one or more point
charges in the presence of boundary surfaces, for example, conductors either
grounded or held at fixed potentials. Under favorable conditions it is possible to
infer from the geometry of the situation that a small number of suitably placed
charges of appropriate magnitudes, external to the region of interest, can simu-
late the required boundary conditions. These charges are called image charges,
and the replacement of the actual problem with boundaries by an enlarged region
with image charges but not boundaries is called the method of images. The image
charges must be external to the volume of interest, since their potentials must be
solutions of the Laplace equation inside the volume; the ‘““particular integral”
(i.e., solution of the Poisson equation) is provided by the sum of the potentials
of the charges inside the volume.
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Jackson’s classical book

images. The original potential problem



IMAGE (INTERFACE POLARIZATION) FORCES: PARTICULAR CASES
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FIG. 1. The polarization contribution (18) (in the units | U, | =
koe?/2) outside and inside of the metal. The dashed line indicates the
approximation (19), and the dot-dash line is a graph of the function
—e%/4z | Uy |.
Method of images for a point charge outside a planar, dielectric surface Metals. Account of screening (spatial
dispersion of the dielectric permittivity) e(k, w)
Dielectrics Specular scattering of metal electrons at its boundary
P. J. JENNINGS etal. A. V. SIDYAKIN

ADVANCES IN PHYSICS, 1988, VoL. 37, No. 3, 341-358 Zh. Eksp. Teor. Fiz. 58, 573—581 (February, 1970)



IMAGE FORCE ENERGY AS CHARGE SELF-ENERGY BEING EQUAL TO
TOTAL SELF-ENERGY MINUS THE BULK ELECTRON SELF-ENERGY.
ANALYTICAL RESULTS IN THE QUASI-CLASSICAL THOMAS-FERMI MODEL

TOTAL SELF-ENERGY (Sidyakin)

WS=€ — Ws—¢  ps=e o — [t g aB @+ aN@) 2>0
pcm pc scr koe? [_H E—2" o, 2 g g] 2<0.
2 e 3
© Idk where & = 2koz, and E2(£), N2(£), and Kz(£) denote the
s—e __ q Weber, Neumann, and Macdonald functions, respectively
VVpc - 2_ k (see, for example,'®’). For £> 1, i.e., z >> r, the fol-
€ lowing expansion is valid
wW.s=e qg? [ kdk U()—-—~[1—_+_;—_+ i
ser - = T 52 1 andasz— 0
2€ 0 (kz +}C2) /2 U(z)_—ﬁ-[i-l— ¢ (In s 3
=773 (ng—7)+]
q? © l-dk oo kdk q’K where C is Euler’s constant (C = 0.577 ...). Outside the
%Sc;;f - — _— f T - metal U(z) varies from 0 as z — « to a value (2/3)U, on
2¢€ k 0 (kZ + KZ) /2 2¢ its surface, and inside the metal U(z) rapidly reaches

the limiting value U, = —koe?/2, which is the polariza-
tion contribution to the energy of a point charge in the
depths of the metal using the approximation (15) for €(k).



IMAGE FORCES: MORE SOPHISTICTED APPROACHES
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-1.0 -05 0 0.5 10 Fia. 3. Schematic representation of the potentials at a metal surface (planar uniform-
DISTANCE (FERMI WAVELENGTHS) background model). The bulk chemical potential i is shown here as positive, but it can
F1G. 2. Electron density at a metal surface versus distance x normal to the surface, have either sign (Table I).

as computed by N. D. Lang [Solid State Commun. T, 1047 (1969)] at two s values using
the planar uniform-background model. One Fermi wavelength is equal to 2a/kr: at -
re = 2 this is 6.55 a.u. (3.46 A), at 7 = 5 it is 16.37 a.u. (8.66 A). The outermost lattice Jellium model
plane of the ionic lattice which the background shown here represents is at x = — }d,

with d the interplanar spacing (neglecting changes of spacing that may occur in the
surface region). The outermost (111) plane of a semiinfinite fcc lattice, for example,

would be at x = —0.226Z'/* Fermi wavelengths, the outermost (110) plane of a bce N D Lang’ SOIld State PhySiCS, V. 28’ p 225_300

lattice would be at x = —0.2192'/® Fermi wavelengths, with Z the ionic charge. [Z = 3
for Al (rs ~ 2), Z = 1 for K (rs ~ 5), for example.] (1973)
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The energy shift AE AE(x) = _(Ze) [ kdxk
due to the charge Ze )

IMAGE FORCES: HIDDEN MANY-BODY PHENOMENA.
SURFACE PLASMONS

PHYSICS LETTERS
SURFACE PLASMONS AND

Volume 38A, number 3 31 January 1972

THE TMAGE FORCE IN METALS

R.H. RITCHIE

It is shown that the classical image potential acting between a point classical charge and a metal
surface may be regarded as originating in the shifted zero point energy of the surface piasmon field
The retardation correcfion to the image potential 158 studied using the electron gas model.

w1 1\2
5 p—H(U—DJrU—) %exp(-%x)

interaction with the €(w) = €1(w) + ieg(w)
surface plasmon field

Temporal dispersion of the dielectric function
X 1S the distance of the charge from the vacuum-metal interface

Forsmall X AE(x) = -(Ze)2/ax



IMAGE FORCES FOR MOVING CHARGES: TEMPORAL AND SPATIAL DISPERSION.
SURFACE PLASMONS

PHYSICAL REVIEW B VOLUME 8, NUMBER 4 15 AUGUST 1973

J. Heinrichs Response of Metal Surfaces to Static and Moving Point Charges and to Polarizable
Charge Distributions

= Q..(_tl : =twt X
W= 47 I - dwe dky The account of both spatial and temporal dispersions
leads to the saturation of image force energies at interfaces!

N 1-e.(ky,w)
X dt’ et«t’ o (11 eRuleol )+l £)] sVeu i ] o _
J;. e’ q(t)e 1re (k) @) Damping of surface plasmons is essential since it

eliminates the image force (polarization) energy
R : :
z,()<0  (4.16) oscillations far away form the interfaces!

where

By (C de, ] 2
€slkiy w) = l:;ij.__,, Ke(k, w)] ' #.17) c(w)=1- a)(ww—ll}— )

wp, = wsV/2 is the bulk plasmon frequency and v is the inverse relaxation time

phys stat. sol. (b) 2,14j 29 (1 999) }ﬁggzt;l;:(;zf the Plasmon Damping for the Dynamical

A. M. GaBovicH, V. M. RozeNnBauM, and A. I. VOITENKO



IMAGE FORCES: TEMPORAL DISPERSION. MOVING CHARGES

Oscillations are due to
real plasmon excitation

Fig. 1. Dependences of the dimensionless image
force energy w = 2oW /g @, on the dimension-
[P :-J\\,fyl. less distance £ = z/L reckoned from the metal
surface into the vacuum for various values of the
plasmon dissipative parameter § = v/a,. Pan
a) corresponds o the normal motion of the
charge g with the speed v from the infinity io-
wards the surface, part b) corresponds to the
same charge reflected from the surface, and part
c) corresponds to the normal motion of the
charge g with the speed v emitted from the sur-
face. Here L = 2avfas, ds = (a2 - v j4)' "
is the “softened” surface plasmon frequency, ey
{c) is the bulk plasmon frequency. » is the inverse

I relaxation time of plasmons




DYNAMICAL IMAGE FORCES: TUNNELING ELECTRONS IN FIELD EMISSION

R. H. Fowler; L. Nordheim Electron Emission in Intense Electric Fields j = CF2e— /¥
Proceedings of the Royal Society of London. Series A, Containing Papers of a In the absence of
Mathematical and Physical Character, Vol. 119, No. 781 (May 1, 1928), 173-181 image forces

;[_1\“ F is electrostatic field
= dFE E)YD(E, F
ai 27r2h3-[ (=il ) D(E, F)y=exp(—1)

1“_,[ dr 2m,| E + eFr— W(r )I)l/2 w(0) = %ezx(l+%€KF/m"’:)

Curve 3 takes into account the dynamic

E field-dependent correction. It explains the observed
'“g deviations from the Fowler-Nordheim law.
o o 8)
G \% 20k A.M. GABOVICH, V.M. ROSENBAUM and A.IL. VOITENKO
= Y 2
S sl DYNAMICAL IMAGE FORCES IN THREE-LAYER SYSTEMS
I & L T AND FIELD EMISSION
10 15 20 i 10 45 20

107, ey H0F oy — Surface Science 186 (1987) 523-549

Fig. 2. (a) Current-voltage charactenstics of the field-emission current from tungsten. Here j is
the current density, and F is the electrostatic field. (b) Field dependence of the current—voltage
characteristic slope. See notations in the text.
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FIG. 1. Arrangement of the charges Q and Q' in a three-
layer plane heterostructure. The width of interlayer 2 (slab) is L.
Layers 1 and 3 (covers) are semi-infinite. &; (i = 1, 2, 3) are dielectric
constants of the corresponding layers. Dimensional quantities are
denoted by capital letters, dimensionless quantities normalized by L
are denoted by lowercase letters and in parentheses. The coordinate
Z (or z) is normal to the interfaces, and the coordinate X (or x) is
parallel to them. The coordinate Z is reckoned from the middle of
the interlayer. D (or d) is the distance between the charges, whereas
R (or p = R/L) is the lateral distance between them.

A. M. Gabovich, M. S. Li, H. Szymczak, A. |. Voitenko,
Phys. Rev. B 105 (2022) 115415

IMAGE FORCES AND CHARGE-CHARGE INTERACTION: THREE-LAYER SYSTEMS. EXACT FORMULAS

W(Z,Z',R) = —ZQQ’me dK D(K,Z,Z")Jo(KR)
0

The function D(K,Z,Z’) is very cumbersome
for three-layers and for specular reflection of
charge carriers in each layer

Is expressed via following blocks

@.2) 1 [DO dk, cosk,z
a ,2) = —
L | 1+ Pers(q kp o)

expliku(c+ )]
(k7 + ¢*)ea(q, ki, o)

asa(q.2) =2

S5.A
kJ_

kI =2nm, kl=Qn+Dm, n=0%1,42, . ...

In the general case, spatial and temporal dispersion are taken into account based on the Green’s

function method.



CHARGE IMAGE FORCES IN THREE-LAYER SYSTEMS: CLASSICAL ELECTROSTATICS

cover 1 slab 2 cover 3
€ €, €,
~1/2 0 12 z=7IL

Figure 1. Scheme of the three-layer system: =; denote dielectric
constants, L is the slab width, Z is the coordinate perpendicular to
the layers, z 1s the reduced coordinate.
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1s the Lerch transcendent

1 (3 — c163) 1
=0) = = ol -60.1,=
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I L |2V kg <o,
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n/_

Exact results!



In the close vicimty of either interface, the interaction of
the charge itself with the polarization charge induced at this
interface strongly exceeds the interaction with the polariza-
tion charge induced at the other interface. Effectively, the
problem also becomes two-layered even at £, # £, # &3, but
in the short-distance limits. In particular, formulas (12) and
(13) remain valid only asymptotically,

( : D) - ™ (14)
wlz—=z—-0) = —77—7"
2 -1
1 |
w(;—>—+ﬂ)—>—“—11. (15)
2 deq |.Z - El
The problem symmetry brings about the same conclusion
(with other constants) for the interface at z = —%.

The long-distance (|z — oc|) asymptotics of the w(z)
dependence deserve special consideration. In particular, if
£y # £3 and &, is finite, it can be easily shown that in the depth
of layer 3 (z — o0), the asymptotic limit of equation (9) is

|
W(z — 00) — — —om (16)
des |z
1.e. the influence of the slab (£2) vanishes as if the interlayer
disappears altogether. In this case, the long-distance asymp-
totics is equivalent to that in the two-layer configuration with
a single interface between media 1 and 3 [cf equation (13)]. As
a result of problem symmetry, we obtain a similar formula for
the (z —+ —oc)-asymptotics,
1 T13

UNZ = —=00) — (17
) 4 ||

CHARGE IMAGE FORCES IN THREE-LAYER SYSTEMS: CLASSICAL ELECTROSTATICS

On the other hand, in the symmetric (s) case, when the sand-
wich covers are identical, we obtain 73; = 0, the expansion
terms (16) and (17) vanish, and the next higher-order term in
the long-distance expansion of, e.g., expression (9) has to be
taken into account. It reads

1 2e3(e3—€)) +ea(ef —€3) 1
- —. (18)
4e3 2e3(81 + £3) 2|

Then, in the case £y = g3 = £ # £3, the both long-distance

asymptotics become identical and look like

(£-8) 1
16?2 |2

wy(z =+ toc) — (19)

So the image force energy turns out substantially weaker in
comparison with the textbook behavior. It occurs because the
polarization charges at both interfaces compensate each other
in the first approximation. This fact was overlooked in the
literature.



CHARGE IMAGE FORCES IN THREE-LAYER SYSTEMS: CLASSICAL ELECTROSTATICS
CREATION OF ELECTROSTATIC BARRIERS AND TRAPS FOR ELECTRONS OR IONS

w
W z>1/2 e —
1
0.02 4! {e}=3:5:¢;4 --—§ 0.00
A 4
0014 T 5 0.01
A =6
0,00 47 =TT T RS el 002 -
I
001 e’ -0.03
2 4 6 8
Z ()

Figure 4. The w(z)-dependences in cover 3 for (a) {3 :5:e3}- and (b) {5: 3 : £3}-structures with various &3’s.



DIPOLE IMAGE FORCES IN THREE-LAYER SYSTEMS: CLASSICAL ELECTROSTATICS
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FIG. 1. A pair of interacting charges Q and Q, located in a three-layer heterostruc-
ture with the constant dielectric permittivities of its layers {&;} = & : & : & at
the coordinates Zy and Z,, respectively, reckoned from the central plane Z = 0.
The other parameters are as follows: S is the actual and R the lateral (along the
interfaces) distance between the charges, ¢ is the orientation angle of the charge
pair with respect to the interfaces, and L is the interlayer (medium 2) width.

For point dipoles both charges are located in the
same layer!
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Reliability of the results: Extrema are located far from the interlayer

Formation of purely electrostatic traps and barriers for polar molecules.



CHARGE INTERACTION IN THREE-LAYER SYSTEMS: CLASSICAL ELECTROSTATICS
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e interlayer. D (or d) is the distance between the charges, whereas

R (or p = R/L) is the lateral distance between them. - - - -
i “; i P d 3. Excitonic insulators in three-

€ Interaction energy wint insiae layers an
for charge pairs from different layers are expressed Iayer SyStemS-
in terms of 4. Electron-hole superfluidity.
E(A, @, p) = f TSR g

o 1+ Aexp(—2q)
(g1 —&)(e2 —€3)

(g1 +&2)(er + €3)

J is the Bessel function



CHARGE INTERACTION IN THREE-LAYER SYSTEMS: CLASSICAL ELECTROSTATICS

Rytova-Keldysh approximation:

N. S. Rytova, Vestn. Mosk. Univ. 3, 30 (1967) [arXiv:1806.00976 ]
L. V. Keldysh Journal of Experimental and Theoretical Physics Letters,
\ol. 29, p.658 (1979)

As a rule, the formation of excitons in the slabs of
three-layer systems is considered in the framework of the
Rytova-Keldysh approximation (RKA) [1,32]. A detailed
analysis of the latter was done in our work [33]. The RKA
expression for the energy of charge-charge interaction in the

case of symmetric structures (g; = &3 = ¢) and for &, > ¢ 000 02 =100
looks like (here, the variables are non-normalized, see Fig. 1) 001 01 1 10 100
T 2¢ R 2¢ R
W — P H o _ N . , 32 Figure 14. Dependences rw(r) and the corresponding RK0 and RKorg approximations for symmetric
RKA QQ & L [ 0 ( & L) 0 ( & L)} ( ) structures D, F, and H. See explanations in the text.

where Hy and N, are the Struve and Neumann functions of
the zeroth order, respectively. Note that formula (32) does CAR ; :
not include the Z coordinates of the charges. Its long-range Conclusion: RKA Talls_ fo_r Con_ventlo_nal
(R/L — o0) asymptotics is identical to asymptotics (16). The heterostructures with similar dielectric

RKA is very popular in relevant studies (see references in

Ref. [33], as well as Refs. [37,144—148] ). Although being constants in different IayerS. For Instance,

derived for the conditions & < &, R>> L, and L — 0, it ¢ = 13.1and 10.1 for GaAs and AlAs,
i1s sometimes overused when applying outside the indicated respectively.

parameter region.



CHARGE INTERACTION IN THREE-LAYER SYSTEMS: CLASSICAL ELECTROSTATICS
Effective-exponential approximations of the exact formulas

The function E(A, a, p) was approximated and simple algebraic formulas obtained

2A o)

ITIEE1=(1+A)1H(1+A) aEEZ:_A.'.l




CHARGE INTERACTION IN THREE-LAYER SYSTEMS: CLASSICAL ELECTROSTATICS

Effective-exponential approximations of the exact formulas

€,:€,:83=1:100:1

1.0_ (N B N N ] SwW

|
0.01 0.1 | 10 100
r (a) r (b)

Figure 19. Dependence sw(r) and its EO, EL, and RKorg approximations for symmetric structures: F (a);
and H (b).



CHARGE INTERACTION IN THREE-LAYER SYSTEMS: CLASSICAL
ELECTROSTATICS

For the “normal” arrangement of the charges (p = 0)

wi3(z,Z, p=0) =

win(z, 7, p=0) =

ws31(z, 7, p =0)

282

1 _ !
L PN Y 1z — 7
283 2
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2
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2

-1

1 _ !
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! 1
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_}LIZCI)I:_A, 1,

2

_ icp[—A,l, lz_z’l“,
(&1 + &2)(&2 + £3) 2

wi(z, z, p=0)=

wp(z, 7, p=0) =

win(z,Z, p=0) =

1 _ !
LN PN Nt
281 2
z —7Z|+2
2

z+ 7|+ 1
2

T—1
_M@[_A, L %“

1 _ !
(62 +&1) 2

1+ 1
_)L32CDI:—A,1, |Z+Z|+ ]}9

—|—A<I>|:—A, I,

— k32¢[—A, 1,

2
1 ~ _ '
S PN N it

282 i 2

- | -

D] A1, L EFD)

2 —

- L o

2_ _ '
—A@[—A,l,#]}.

Again, wji(z,z', p = 0) = w;;(z, 7, p = 0).



CHARGE AND DIPOLE ELECTROSTATICS IN TWO- AND THREE-LAYER SYSTEMS

GENERAL CONCLUSIONS:

1. Our original approach gives a practical scheme to calculate both
polarization (image) forces and charge-charge or dipole-dipole-interaction
In layered systems.

2. It 1s general enough to incorporate both temporal and spatial dielectric
permittivities.

3. It allows to obtain exact analytical formulas in the classical electrostatic
approximation.

4. It allows to obtain useful and relatively simple approximate formulas on
the basis of cumbersome original expressions.

5. The results obtained have a large range of applicability in practically
significant cases as Inputs to solve a number of problems



