

Anomalous Diffusion of Magnetic Monopoles in Spin Ice

• mpi<mark>pks</mark>

Emergence of a Dynamical Fractal in a Clean Magnet

Jonathan N. Hallén

S.A. Grigera, D.A. Tennant, C. Castelnovo, and R. Moessner

ECRYS22

ejn41@cam.ac.uk

Spin Ice Basics

Ising spins on the pyrochlore lattice

Constrained to point along easy axes (in or out)

Ferromagnetic nearest-neighbour interactions

→ Frustrated magnet with highly degenerate 2-in-2-out groundstates

Ice Rules

2 spins in and 2 spins out per tetrahedron

Bramwell & Harris, J. Phys.: Cond. Mat. 32 (2020).

Dysprosium Titanate (Dy₂Ti₂O₇)

J = 15/2 spins with Ising-like single ion states

Long-ranged dipolar spin-spin interactions

Follows the ice rules due to screening

Dysprosium Titanate (Dy₂Ti₂O₇)

J = 15/2 spins with Ising-like single ion states

Long-ranged dipolar spin-spin interactions

Follows the ice rules due to screening

Emergent magnetic monopole excitations

Monopoles live on the diamond lattice

Monopole creation cost ~ 4 K Monopole movement cost $\sim \pm 0.05$ K

"Standard Model" (SM) of Spin Ice Dynamics

Spin flip dynamics (T < 10 K)

Quantum tunnelling between Ising states, enabled by transverse fields.

Flip attempts at constant rate $1/\tau_0$.

Monte Carlo time \propto real time.

Monopole creation is rare at low T.

Monopole motion dominates dynamics.

Random choice between 3 directions.

Ryzhkin, J. Theor. and Exp. Phys., 128, 559 (2005). Jaubert & Holdsworth, Nature Physics 5, 258 (2009).

The Puzzles

Previous explanations invoked extrinsic contributions (e.g. disorder, boundary effects).

Anomalous Magnetic Noise

Experimental results from: A. M. Samarakoon, et al., Proceedings of the National Academy of Sciences 119, e2117453119 (2022).

Beyond the "Standard Model" (bSM)

 $\sim \frac{1}{3}$ of spins neighbouring monopole have $\vec{B}_{\text{transverse}} = \vec{0}$.

These attempt flips at lower rate $1/\tau_{slow}$.

$$Dy_2 Ti_2 O_7: \qquad \frac{\tau_{slow}}{\tau_{fast}} \approx 10^4$$

(We approximate $\tau_{slow} = \infty$)

The Puzzles Revisited

Rapidly Diverging Relaxation Time 10⁰ 10² Experimental SM SM bSM Relaxation Time (s) 10⁰ bSM 10^{-1} (in 10⁻² (in 10⁻²) (in 10⁻⁴) (in 10⁻⁴) 10^{-2} 10^{-6} T = 1.04 KT = 0.84 K10-3 10^{-8} T = 0.65 K0.8 1.0 1.2 1.6 10^{-2} 10⁰ 10² 10³ 0.6 1.4 1.8 10^{1} 104 10⁵ 10^{-1} Temperature (K) Frequency (Hz)

Rapidly diverging relaxation time and anomalous magnetic noise explained through purely intrinsic effects!

SM: $\tau_0 = 200 \ \mu s$ Fitting parameter bSM: $\tau_{\text{fast}} = 85 \ \mu \text{s}$

Anomalous Magnetic Noise

Aside: Percolation Theory

Pick your lattice of choice

Randomly fill $p \ (0 \le p \le 1)$ of the bonds

A single percolating cluster appears at the critical point $p = p_c$

The percolating cluster is self-similar → Fractal

Links to Percolation Theory

Ice rules and slow spins leave on average 2 directions for a monopole to move in.

- \rightarrow (Dynamical) bond percolation problem on the diamond lattice.
 - \rightarrow Monopoles are random walkers on percolation clusters.

Close to critical filling fraction $p_c \approx 0.39 \rightarrow$ Fractal structure on length scales up to correlation length.

→ Monopoles move on an **emergent dynamical fractal**!

n = 3

6

n = 3

Cluster Growth

Monopole Noise

Subdiffusive Monopoles

Summary

Bimodal distribution of internal transverse fields proves crucial to spin ice dynamics.

Explains dynamical properties of spin ice as a consequence of *intrinsic* effects.

Emergent fractal structure in a uniform, disorder-free bulk magnetic crystal.

Extra slides

Hamiltonians

$$\begin{aligned} \mathcal{H}_{\rm NN} &= -J_{\rm eff} \sum_{\langle i,j \rangle} \boldsymbol{S}_i \cdot \boldsymbol{S}_j \\ \mathcal{H} &= D a^3 \sum_{i < j} \left[\frac{\boldsymbol{S}_i \cdot \boldsymbol{S}_j}{r_{ij}^3} - \frac{3(\boldsymbol{S}_i \cdot \boldsymbol{r}_{ij})(\boldsymbol{S}_j \cdot \boldsymbol{r}_{ij})}{r_{ij}^5} \right] + J_1 \sum_{\langle i,j \rangle} \boldsymbol{S}_i \cdot \boldsymbol{S}_j \\ &+ J_2 \sum_{\langle i,j \rangle_2} \boldsymbol{S}_i \cdot \boldsymbol{S}_j + J_3 \sum_{\langle i,j \rangle_3} \boldsymbol{S}_i \cdot \boldsymbol{S}_j + J_3' \sum_{\langle i,j \rangle_3'} \boldsymbol{S}_i \cdot \boldsymbol{S}_j \\ D a^3 &= 1.3224 \text{ K} \quad J_1 = 3.41 \text{ K} \quad J_{\rm eff} = J_{\rm eff}(T) \sim 5.7 \text{ K} \\ J_2 &= 0.0 \text{ K} \quad J_3 = -0.00466 \text{ K} \quad J_3' = 0.0439 \text{ K} \end{aligned}$$

 J_2 J_3 J'_3

Cluster Growth

Structured percolation

Monopole Noise

Structured percolation

Loop updates

Varying slow timescale

Relaxation Time

