ECRYS 2022 : International Research School and Workshop on Electronic Crystals

August 8-20, 2022 Carges,France (Aug 10)

Density controlled BCS-BEC crossover in 2D superconductors

Yoshi Iwasa

Department of Applied Physics and QPEC, University of Tokyo RIKEN Center for Emergent Matter Science

Acknowledgements

Samples Y. Kasahara (Kyoto)

DFT calculation R. Arita (Tokyo) T. Nomoto (Tokyo) T. Nojima (Tohoku)

M. Heyl (Humboldt)

K. Adachi (RIKEN)

Y. Kato (UT)

1. Introduction

2. 2D BCS-BEC crossover in ion gated LixZrNCI

3. Vortex dynamics across the crossover

BCS-BEC crossover

A theoretical phase diagram connecting BCS and BEC

(a_s : interaction strength), (k_F : Fermi wave number, carrier density)

C. A. R. Sá de Melo, M. Randeria, and J. R. Engelbrecht, *Phys. Rev. Lett.* **71**, 3202 (1993). M. Randeria and E. Taylor, *Annu. Rev. Condens. Matter Phys.* **5**, 209 (2014).

Ultracold atoms

Laser cooling of fermion gas

N =10⁵ \sim 10⁸, T < 1 μ K

Feshbach resonance

for tuning the interatomic interaction (scattering length).

C. A. Regal et al., Nature 424, 47 (2003).

BCS-BEC crossover

Can BCS-BEC crossover be induced by density control?

(a_s : interaction strength), (k_F : Fermi wave number, carrier density)

C. A. R. Sá de Melo, M. Randeria, and J. R. Engelbrecht, *Phys. Rev. Lett.* **71**, 3202 (1993). M. Randeria and E. Taylor, *Annu. Rev. Condens. Matter Phys.* **5**, 209 (2014).

Density controlled 2D superconductivity: Gating

K. Ueno et al., *Nat Mater.* **7**, 855 (2008)

Y. Cao et al., *Nature* **556**, 80 (2018)

Density induced BCS-BEC crossover: 2D vs 3D

Contact potential model

Courtesy of Kyosuke Adachi (RIKEN)

Layered nitrides

S. Yamanaka (Hiroshima)

Adv Mater (1996), Nature (1998)

Semiconducting 2D materials with honeycomb structures

Li doped ZrNCI (15 K) and HfNCI (25 K)

- Double-honeycomb
- Highly 2D electronic structure.

Degenerate valleys

M. Calandra et al., PRL 114, 077001 (2015).

Bulk property of layered nitrides (ZrNCI, HfNCI)

[Zr] S. Yamanaka *et al.*, *Adv. Mat.* **8**, 771 (1996); Y. Taguchi *et al.*, *PRL* **97**, 107001 (2006). [Hf] S. Yamanaka et a., *Nature* **392**, 580 (1998). T. Takano *et al.*, *PRL* **100**, 247005 (2008).

Gate-induced superconductivity in cleaved crystal ZrNCI

J. T. Ye *et al*. *Nat Mater* **8**, 125 (2010)

Two modes of ionic gating

Electrostatic

Electric-double-layer transistor (EDLT)

J. T. Ye *et al.*, *Science* **338**, 1193 (2012). Y. Saito *et al.*, *Science* **350**, 409 (2015).).

Electrochemical

Intercalation

W. Shi *et al.*, *Sci. Rep.* **5**, 12534 (2015). Y. Yu *et al.*, *Nature. Nano.* **10**, 270 (2015).

Gate controlled ntercalation

Phase diagram – Li_xZrNCI

Y. Nakagawa et al., Science 372, 190 (2021).

Tunneling spectroscopy in Li doped HfNCI

Y. Nakagawa et al., PRB. 98, 064512 (2018).

Tunneling spectroscopy of LixZrNCI

 \succ SC gap develops with decreasing x.

Y. Kasahara et al., PRL103, 077004 (2009).

Large gap & strong coupling at low-doping regime.

Approaching BCS-BEC crossover

Х

Pseudogap state

> Gap opens above T_c at low doping level.

 \succ Evolution of *T*^{*} toward the insulating phase.

Y. Nakagawa *et al.*, Science 372, 190 (2021)

BCS-BEC crossover

Pseudogap state well developed

Comparison with theory of 2D BCS-BEC crossover

M. Randeria, Science 372, 132 (2021).

Comparison with cold gas of ⁶Li

Unified experimental phase diagram

Uemura plot

Layered nitrides traverse from deep BCS to crossover to BEC.

Comparison with cuprates

Vortex properties in the two limits

Caroli-de Genne-Matricon quantization

BEC

BCS

Dissipationless core

Dissipative core

Vortex Hall effect

Electromagnetic induction Vortex flow

V_H

Occurs in vortex liquid region

Supercurrent

important for layered superconductors

YBa₂Cu₃O₇ Nd_{1.85}Ce_{0.15}CuO_{4-v} 94 6 8 10 12 14 16 18 100(a) (a) 80 60 /_{xx}[μΩcm] $\mathbf{B} = \mathbf{0}$ 60 2 kG 5 kG 40 10 kG • 10 kG 20 kG 20 kG 30 kG 20 20 0.4 0.4(b) (b) 0.2 2 kG 0.2 ρ_{xy}[μΩcm] 5 kG 10 kG 20 kG 0.0 -0.2 • 10 kG 20 kG -0.4 ▲ 30 kG 92 93 94 10 12 14 16 18 20 88 80 T (K) T (K)

Remains to be understood.

S.J. Hagen et al., PRB 47, 1064 (1993)

More VHE in cuprates:

- Y. Iye, S. Nakamura, and T. Tamegai, Physica C 159, 616 (1989)
- T. Nagaoka et al., PRL 80, 3594 (1998)
- S. Zhao et al., PRL 122, 247001 (2019).
- R. Ogawa et al., PRB 104, L020503 (2021)

Evolution of VHE with doping

Increased doping leads to decreased VHE.

Hall angle vs doping

captures a trace of the large Hall angle expected in BEClimit

2D time-dependent Ginzburg-Landau (TDGL) model

Kyosuke Adach RIKEN BDR, iTHEMS Yusuke Kato, Univ Tokyo

$$(\gamma + i\lambda)\frac{\partial\Delta(\boldsymbol{r},t)}{\partial t} = \left[-\frac{T - T^*}{T^*} - b|\Delta(\boldsymbol{r},t)|^2 + \xi^2 \left(\boldsymbol{\nabla} + i\frac{2\pi}{\phi_0}\boldsymbol{A}(\boldsymbol{r})\right)^2\right] \Delta(\boldsymbol{r},t) + \zeta(\boldsymbol{r},t)$$

T* identified as mean-field transition temperature

$$\gamma = \frac{\pi}{8T^*}$$
 \leftarrow For simplicity, we use the value derived for BCS region
Abrahams & Tsuneto, Phys. Rev. 152, 416 (1966) 50

$$\lambda = -\frac{1}{2T^*} \frac{\partial T^*}{\partial E_F} \qquad \leftarrow \begin{array}{l} \text{Based on gauge invariance} \\ \text{Aronov, Hikami, \& Larkin, PRB 51, 3880 (1995)} \end{array}$$

 $\xi \left(=\sqrt{\phi_0/2\pi B_{\rm c2}(0)}\right) \quad {\rm col}$

-))) coherence length
- *b* parameter of fluctuation interaction

Vortex conductivity

Ullah & Dorsey, PRB 44, 262 (1991)

$$\sigma_{ab}^{\rm V} = \frac{1}{TS} \int_0^\infty \mathrm{d}t \int \mathrm{d}^2 \boldsymbol{r} \, \mathrm{d}^2 \boldsymbol{r}' \, \langle j_a(\boldsymbol{r},t) j_b(\boldsymbol{r}',t) \rangle$$

Abrahams, Prange, & Stephen, Physica 55, 230 (1971)

Comparison of theory and experiments

Hall angle vs. x

Temperature dependences

Trend in $\theta_{\rm H}$ is qualitatively captured

The Hall anomaly is well reproduced

Evolution of vortex Hall angle through crossover

Summary

- 1. Gated superconductivity of ZrNCI to the low carrier density limit
- 2. 2D BCS-BEC crossover
 - Pesudogap phase
 - > Upper limit $T_{BKT}/T_F = 1/8$

Ideal 2D system with parabolic dispersion Without any magnetic or CDW instabilities

3. Vortex Hall effect in the crossover
 ➢ Enhanced Hall angle toward BEC (Signature of superclean region)

Y. Nakagawa *et al.*, *PRB.* 98, 064512 (2018).
Y. Nakagawa *et al.*, *Science* 372, 190 (2021).
M. Heyl, K Adachi et al., submitted.

