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Principal points:

 Non-local elastic theory due to Coulomb interactions 

 Staggered magnetization vortices and domain walls in SDW

 Combined topological defects in SDW –
half dislocation coupled to semi-vortex

 Double core dislocation + magnetic domain wall 
for the spin-orbital coupling



At distances r>>rscr: Coulomb hardening

Non-local elastic theory for Density Waves.
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Non screened Coulomb interactions (within the screening volume)
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W{} =  E0N

Not a usual perimetrical (lnN) but area law (~N)

At large distances the standard (lnN) law is restored but enhanced 
as ~n

–1/2 .



Phase slips sequence
Dislocations in 
transverse electric field



Order parameter and allowed topological defects   η → η

CDW SDW 

ηCDW=AΔ0exp(iQr+ϕ) ηSDW=AΔ0mexp(iQr+ϕ) 
m is the unit vector of the 

staggered magnetization

 normal dislocation, 2 translation: 

+2, mm

 normal m - vortex, 2 rotation: 

m O2 m, 

 combined object :

+, m O m = -m

 Phase vortex, dislocation, 
2 translation: 

+2

 Amplitude soliton : =const

 combined object : 
 amplitude-phase soloton

+, A =-1→A=+1

CDW =|CDW| cos(Qx+) SDW =|SDW|2 cos(2Qx+2)



Energy of the vortex with the winding number  Wm~Tcs
2

Energy of the dislocation ( =1) : W~Tc(s/n)
2

In general if 2(/2)  then  WW/2

Only smallest  are stable

T~Tc :  W ~  Wm all energies are 
comparable

 Normal dislocation

 Half-dislocation combined with 
semi-vortex

 Normal magnetic vortex

Result depends on numbers.

T<<Tc :    W >> Wm

 Half-dislocation combined with semi-vortex –
 obligatory decoupling of the dislocation

Phase vortex and magnetic vortex

 =1/2, m=1/2

=1 W = ( W +Wm)/2 W/2

 =1/2, m=1/2



1 Continuous route in 1D:
For a CDW, successful simulations of phase-slips has been achieved for two models.

1. The model driven by a difference of condensate densities at the boundaries:

2. The model driven by the applied longitudinal field fixed boundary conditions.

We can try to extend any of these approaches to the SDW case.

2 1D phase slips in the easy plane SDW
we should use the spherical vector for the 3-degrees of freedom of the planar SDW case





The vector field of the local SDW 
magnetization for the a hymer.
The chain axis is horizontal.



Spin – orbital coupling (Anisotropy)

Other cases: 

The both  π phase vortices  will be bound by a string - the Neel domain wall.

Spin-flop field Hs-f ~ 1T originates the string of the length ~0.1m.

At higher magnetic fields only a small in-plane anisotropy is left so that the string length may reach the  
sample width.

Wm =vF[a(im)
2 +l-2 mz

2 ] l - the DW width is determined via spin-flop field.

 semi-vortex  180o domain wall WmDW ~1K/chain, l~100 ~104A

Spin anisotropy → the free rotation of spins is prohibited. 

Pure “easy plane” or “easy axes” (for H > Hsf exceeding the spin-flop field Hsf ~ 1 T)– no changes



Splitting of the isolated 2 vortex

two  vortices confined by the string of the180o domain wall 

r<rscr :  

Energy lost    Wm= WmDW N , WmDW~1K/chain

Energy gain WDisl. = -E0N/2,  

E0 > W - constant repulsion wins against constant  attraction 

r>rscr :  

Energy lost Wm= WmDW N Energy gain WDisl. = -(E0/n
1/2)lnN+ WmDW N

Equilibrium distance between half dislocations N~ E0/ (n
1/2WmDW ) 



Effect of rotational anisotropy:
String tension binds semi-vortices



Narrow Band Noise Generation 

Sliding Charge/Spin Density Waves generate  the Narrow Band Noise 

(NBN) a coherent periodic unharmonic signal with the fundamental 

frequency   being proportional to the mean  dc sliding current j with the 

universal ratio   /j . 
CDW   

 /j=  two electrons per CDW wave length . CDW =|CDW| cos(Qx+)

SDW 

 /j =2 if only electron density is SDW =|SDW|2 cos(2Qx+2)

involved

 /j =  if spins are relevant.



Competing models:

The Wash-Board Frequency (WBF) model : NBN is generated extrinsically while the 

DW modulated charge passes through the host lattice sites or its defects.

But : 
(i) The interaction between the rigid DW and the regular host lattice Vhost~cos(nϕ), usually 

n=4→ an n-fold WBF contrary to experiments. 
(ii) Interaction with the host impurities Vimp ~ cos(Qxi + ϕ) the positionally random phase shifts 

–Qxi

prevent any coherence in the linear response

The Phase Slip Generation (PSG) model: the NBN is generated by the phase slips 

occurring near injecting contacts.

But: 
a regularity as shown by a remarkably high coherence of the NBN in experiments

DW does not slide at the sample side surface ,  coupling cos(ϕbulk – ϕsurface) with ϕbulk ∝ t and 
ϕsurface = cnst provide a necessary WBF. Bridge to PSG model

Our point of view:     Contrary to CDW the fundamental ratio NBN frequency to DC current is not the 
universal parameter, changing from ½ near Tc to 1 at T<< Tc  and being restorted to ½ in case of 
magnetic anisotropy.



Conclusion

 In SDW at low temperature  conventional dislocations loose their priority in favor 
of “hymers” – the  complex topological objects: a half-integer dislocation 
combined with a semi-vortex of the staggered magnetization .

 The combined topological objects are stabilized by lowering the Coulomb energy 
of dislocations especially important at low temperatures (Coulomb hardening)

 At the presence of magnetic anisotropy the two combined objects are connected 
by the string – Neel domain wall. 

 Contrary to CDW the fundamental ratio NBN frequency to DC current is not the 
universal parameter, changing from ½ near Tc to 1 at T<< Tc  and being restorted
to ½ in case of magnetic anisotropy.


