

Transient Enhancement of the Ferroelectricity in the Rashba Semiconductor α-GeTe

Claude Monney

ECRYS-2022, Cargèse, August 2022

Acknowledgements

Group of Ultrafast Spectroscopy @ Uni. Fribourg

Geoffroy Kremer @ I. Jean-Lamour Nancy

UniFR too: Changming Yue & Philipp Werner

Fritz-Haber Institute, Berlin

Julian Maklar Laurenz Rettig Ralph Ernstorfer

Uni. West Bohemia (theory)

Fritz Haber Institute

Max Planck Gesellschaf

Laurent Nicolaï Jan Minár NEW TECHNOLOGIES RESEARCH CENTRE UNIVERSITY OF WEST BOHEMIA

Paul Scherrer Institute

Juraj Krempaský

EPFL / PSI Hugo Dil

Uni. Linz (thin films) Gunther Springholz

Introduction and motivation

Introduction

Germanium telluride is a semiconducting and ferroelectric material at RT

Below the Curie temperature (700 K), GeTe adopts a rhombohedral structure

The strong lattice distorsion ($dz_2 > dz_1$) along the 111 direction leads to the ferroelectric order

High-quality α -GeTe(111) can be epitaxially grown by MBE with Te termination

STM α -GeTe(111)

G. Kremer et al., PRR **2**, 033115 (2020)

Rashba effect

For a 2D electron gas: Rashba Hamiltonian

$$H_{eff} = H_0 + H_{SO}$$
$$H_0 = -\frac{\hbar^2}{\nabla} \vec{\nabla}^2$$

$$H_{SO} = \frac{\hbar}{4m^2c^2} \left(\vec{\nabla}V \times \vec{p}\right) \cdot \vec{s}$$

k dependent splitting

$$E_{\pm}(k) = \frac{\hbar^2 k^2}{2m} \pm \alpha_R k$$

- Spin-orbit strength
- Surface gradient potential

Rashba systems measured by ARPES

(i) **Surface states of metals**: invertion symmetry is broken due to the existence of the surface (As(111), Au(111), Cu(111) ...)

(ii) **Bulk states**: non-centrosymmetric semiconductors with a polar structure and a large spin-orbit interaction (BiTeBr, BiTeI, BiTeCI)

GeTe : a ferroelectric Rashba semiconductor

ARPES on K doped α-GeTe(111) at 300 K and with 21.2 eV

G. Kremer et al., PRR **2**, 033115 (2020)

Symmetry breaking along the (111) direction and spin-orbit interaction gives rise to :

- Giant bulk Rashba effect
- Spin polarized surface and bulk states with a large splitting as probed by (SR-)ARPES
- Possible to manipulate / reverse the ferroelectricity using an external electric field : see J. Krempasky et al., PRX 8, 021067 (2018)

Ferroelectric Rashba semiconductor

Spin-to-charge conversion in GeTe

Generation of spin current \vec{J}_s by microwave field and staturating field \vec{H}

Varotto et al., Nature Electronics (2021)

Fe

Gel

8

Optical manipulation of Rashba-split 2-dimensional electron gas on K-doped Bi₂Se₃

K-doped Bi_2Se_3 is a semiconductor with a significant band bending.

In few picosecond, the Rashba splitting of the 2DEG is reduced by ~20%.

This is explained as the consequence of Surface Photovoltage (SPV) reducing the surface confining potential.

 \Rightarrow weaker Rashba splitting

Michiardi *et al.*, Nature Commun. 2022 ⁹

Motivation : out-of-equilibrium dynamics of GeTe

Is optical control of the ferroelectricity in GeTe possible? It could be interesting for applications in spintronics!

- Can we control the Rashba splitting of GeTe with an femtosecond optical pulse?
- Semiconductor: a surface photovoltage can be induced! How strong?
- $\circ~$ How does the electronic structure evolve on the ps timescale ?
- The ideal technique to answer these questions is time-resolved ARPES

Out-of-equilibrium dynamics of GeTe?

Previous works:

- □ Ultrafast electron diffraction of GeTe (transmission)
 - on a 20 nm thin film
 - 800 nm pump with > 1 mJ/cm²

J. Hu et al., ACS Nano 2015

Transition from ferroelectric phase to paraelectric state in less than 1 ps.

□ TD-DFT MD simulation confirms the dynamics (Wang *et al.*, PRL 120, 185701 (2020))

FRITZ HABER INSTITUTE DEPT. OF PHYSICAL CHEMISTRY MAX PLANCK SOCIETY

XUV trARPES experimental setup

probe during our measurements

Results

Low-energy electronic structure of GeTe at FHI

With the momentum microscope (TOF): full Brillouin zone

Dynamics of states at $\overline{\Gamma}$: ferroelectricity increase!

More interesting dynamics of bulk states B_1 and B_2 !

 \succ Transient shift of B₁ to higher binding energy

The Rashba splitting of the bulk states increases!

Can be reproduced by an increase of the ferroelectric distortion!

Dynamics of states at $\overline{\Gamma}$: transient ferroelectricity modulation

Blue: transient evolution of the energy shift of CPB

Transient ferroelectricity increase: origin

Upon photoexcitation, a shift of the whole spectrum to higher binding energy is expected!

 $\phi_{\text{SPV}} > 0$

Ē

Ē_{SCR}

Transient ferroelectricity increase: origin

GeTe is a semiconductor with a band gap of about 0.8 eV.

Our thin films are p-doped and a downward band bending is expected:

Upon photoexcitation, a shift of the whole spectrum to higher binding energy is expected!

Transient ferroelectricity increase: origin

The surface photovoltage (SPV) generates a new electric field E_{SPV} at the surface

This increases the ferroelectric distortion at the surface!

Coherent phonon mode at 5 THz?

The frequency of the FE-related distortion oscillation is 15% larger than expected for the FE-mode at Γ .

The top layers get closer to each other: we propose that these surface layers are stiffer and the phonon frequency are harder!

Delayed ferroelectric increase

Build-up of surface photovoltage depends on the separation of holes and electrons in the space charge region (SCR) due to band bending.

Electron mobility:	Electric field (SPV):
$\mu_c = 100\cdot 10^4~\mathrm{m}^4/\mathrm{Vs}$	$E_{SPV}=1\cdot 10^7$ V/m

Estimated time for migration of electrons to surface: 100 fs

At t_0 : photoexcitation of electrons/holes \Rightarrow electrons moves to surface and build-up SPV < 100 fs

Transient Enhancement of the Ferroelectricity in the Rashba Semiconductor α-GeTe

The enhancement of the ferroelectricity is a surface effect in thin film of GeTe

Thank you for your attention!

