



# Making sense of stripes, pseudogaps, and superconductivity in cuprates

ECRYS 2022 August 12, 2022





Vic Emery



#### **Recent collaborators**









Yangmu







Markus HUCKER Guangyong XU lgor ZALIZNYAK





Steven KIVELSON Eduardo FRADKIN

#### **Cuprate phase diagram**



Keimer, Kivelson, Norman, Uchida & Zaanen, Nature **518**, 179 (2015)

# Finding the answer in an unexpected place



Hücker et al., PRB 83, 104506 (2011)



#### **Antiferromagnetic insulator**



large  $U \rightarrow$  localized electrons

 $t + Pauli excl. \rightarrow AF spin alignment$ 

superexchange: P.W. Anderson (1959)

# Charge transfer gap and doping









Uchida *et al.*, PRB **43**, 7942 (1991) P. Cai *et al*., Nat. Phys. **12**, 1047 (2016)



Sugai et al., PRB 68, 184504 (2003)

8

 $B_{1g}$ (xy)

*T*=300 K

x=0 (AF)

x=0.035 (SG)

# Spin excitations in La<sub>2-x</sub>(Sr,Ba)<sub>x</sub>CuO<sub>4</sub>

**x** = 0

x = 0.05













#### Spin and charge stripe order



1 hole / 4 Cu sites

# Charge stripe order competes with 3D SC order



Hücker et al., PRB 83, 104506 (2011)



# But charge stripes coexist with 2D superconductivity



# Holes remain paired in high field

LBCO x = 1/8 in a *c*-axis magnetic field

Sheet resistance saturates at high field

**\*** Ultra-Quantum Metal phase

Hall constant remains negligible at high field

Particle-hole symmetry in UQM phase

Y. Li *et al.*, Sci. Adv. **5**, eaav7686 (2019)



# **Charge stripes and superconductivity**

C. Castellani, C. Di Castro, and M. Grilli, Z. Phys. B **103**, 137 (1997).
"Non-Fermi-liquid behavior and *d*-wave superconductivity near the CDW QCP"
S. Caprara, C. Di Castro, G. Seibold, and M. Grilli, Phys. Rev. B **95**, 224511 (2017).
"Dynamical CDWs rule the phase diagram of cuprates"

V.J. Emery, S.A. Kivelson, and O. Zachar, Phys. Rev. B **56**, 6120 (1997). "Spin-gap proximity effect mechanism of high-temperature superconductivity"

Charge stripe = 1D electron gas

Spin gap from environment induces pairing correlations

Problem: cannot explain SC in LBCO at x=1/8 Spin-stripe order so no spin gap

![](_page_22_Figure_6.jpeg)

![](_page_24_Picture_1.jpeg)

J' = J

![](_page_27_Figure_2.jpeg)

E. Dagotto, J. Riera, D. Scalapino, PRB **45**, 5744 (1992). "Superconductivity in ladders and coupled planes"

E. Dagotto and T.M. Rice, Science **271**, 618 (1996). "Surprises on the Way from 1D to 2D Quantum Magnets"

![](_page_27_Figure_5.jpeg)

Barnes+Riera, PRB 50, 6817 (1994)

#### Charge stripes have spin excitations

 $La_{2-x}Sr_{x}NiO_{4}$  with x = 1/3

 $La_{2-x}Ba_xCuO_4$  with x = 1/8

![](_page_28_Picture_3.jpeg)

Gapless 1D spin excitations

Large spin gap on charge stripes

![](_page_29_Figure_0.jpeg)

**1D** spin excitations on charge stripes

Ni<sup>2+</sup> Ni<sup>2+</sup>+hole S = 1 S = 1/2

Geometric frustration decouples spin excitations on charge stripes

A.M. Merritt *et al.*, Phys. Rev. B **100**, 195122 (2019) 23

 $\mathbf{\hat{v}}$ 

First detected by: A.T. Boothroyd *et al.*, PRL **91**, 257201 (2003)

#### LBCO x = 1/8

Ц

![](_page_30_Figure_1.jpeg)

Nature **429**, 534 (2004)

![](_page_30_Figure_3.jpeg)

![](_page_31_Figure_1.jpeg)

LBCO: JMT *et al.*, Nature **429**, 163 (2004) LSCO: Vignolle *et al.*, Nat. Phys. **3**, 163 (2007)

![](_page_32_Figure_1.jpeg)

LBCO: JMT *et al.*, Nature **429**, 163 (2004) LSCO: Vignolle *et al.*, Nat. Phys. **3**, 163 (2007)

![](_page_33_Figure_1.jpeg)

LBCO: JMT *et al.*, Nature **429**, 163 (2004) LSCO: Vignolle *et al.*, Nat. Phys. **3**, 163 (2007)

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_1.jpeg)

![](_page_36_Figure_1.jpeg)

![](_page_37_Figure_1.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_1.jpeg)

LBCO: JMT *et al.*, Nature **429**, 163 (2004) LSCO: Vignolle *et al.*, Nat. Phys. **3**, 163 (2007)

![](_page_40_Figure_1.jpeg)

LBCO: JMT *et al.*, Nature **429**, 163 (2004) LSCO: Vignolle *et al.*, Nat. Phys. **3**, 163 (2007)

![](_page_41_Figure_1.jpeg)

LBCO: JMT *et al.*, Nature **429**, 163 (2004) LSCO: Vignolle *et al.*, Nat. Phys. **3**, 163 (2007)

![](_page_42_Figure_1.jpeg)

LBCO: JMT *et al.*, Nature **429**, 163 (2004) LSCO: Vignolle *et al.*, Nat. Phys. **3**, 163 (2007)

# Spin stripe order competes with uniform SC

![](_page_43_Figure_1.jpeg)

uniform *d*-wave SC order

pair-density-wave order

![](_page_43_Picture_3.jpeg)

#### PDW order explains 2D SC in LBCO x = 1/8

![](_page_44_Figure_1.jpeg)

Interlayer Josephson coupling is frustrated.

Berg *et al.*, PRL **99**, 127003 (2007) Agterberg *et al.*, ARCMP **11**, 231 (2020) <sup>32</sup>

# Need a spin gap to get uniform SC order

Hard x-ray scattering shows charge stripe

![](_page_45_Figure_1.jpeg)

H. Miao et al., npj Quantum Mater. 6, 31 (2021)

Neutron scattering reveals a spin gap

![](_page_45_Figure_4.jpeg)

LSCO x = 0.16

N.B. Christensen *et al.*, PRL **93**, 147002 (2004)

![](_page_46_Figure_0.jpeg)

# **Universal magnetic spectrum**

![](_page_47_Figure_1.jpeg)

# **Doping dependence of pairing scale**

60

(a)

ss 40 соз Ш Bi2212 YBC 20 LSCO Energy (meV) 60 70 70 70 70 (b) Bi2212 0 Ś (C) LSCO Temperature ( SC 0 0 0.1 0.2

р

Hg1201

0.3

Upper limit on pairing scale is similar for all cuprates

 $E_{cross}$  provides envelope for superconducting pseudogap,  $\Delta_{AN}$ , as well as coherent gap,  $\Delta_{c}$ 

SC fluctuations in LSCO peak near p ~ 0.1 and extend far above  $T_{c}$ 

Brookhaven<sup>-</sup> National Laboratory

-100 -50 0 50 100 V<sub>bias</sub> (meV)

# ith overdoping

![](_page_49_Figure_2.jpeg)

![](_page_49_Figure_3.jpeg)

Y. Li et al., arXiv:2205.01702

Self-organized granular superconductivity near the superconductor-to-metal transition

Spivak, Oreto, Kivelson, PRB **77**, 214523 (2008). ZX Li, Kivelson, DH Lee, npj QM **6**, 36 (2021).

Birgeneau et al., JPSJ 75, 111003 (2006)

## **Evidence for inhomogeneous superconductivity**

![](_page_50_Figure_1.jpeg)

![](_page_50_Figure_2.jpeg)

Y. Li *et al*., arXiv:2205.01702

# **Correlations vs doping**

![](_page_51_Figure_1.jpeg)

# Conclusion

Snapshot of low-energy spin correlations:

![](_page_52_Figure_2.jpeg)

Cuprate superconductivity: Can't live with stripes, Can't live without stripes.

![](_page_52_Picture_4.jpeg)

![](_page_53_Picture_0.jpeg)

![](_page_54_Figure_1.jpeg)

LBCO: JMT *et al.*, Nature **429**, 163 (2004) LSCO: Vignolle *et al.*, Nat. Phys. **3**, 163 (2007)

![](_page_55_Figure_1.jpeg)

LBCO: JMT *et al.*, Nature **429**, 163 (2004) LSCO: Vignolle *et al.*, Nat. Phys. **3**, 163 (2007)

![](_page_56_Figure_1.jpeg)

LBCO: JMT *et al.*, Nature **429**, 163 (2004) LSCO: Vignolle *et al.*, Nat. Phys. **3**, 163 (2007)

![](_page_57_Figure_1.jpeg)

![](_page_58_Figure_1.jpeg)