Spin and charge density waves in chromium through the spin-flip transition : statics and ultrafast dynamics

V.L.R. Jacques¹, C. Laulhé^{1,2}, D. Ghoneim¹, A. Gallo-Frantz¹, S. Ravy¹ & D. Le Bolloc'h¹

¹Laboratoire de Physique des Solides, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91405 Orsay, France ²Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette, France

ECRYS2022 – Cargèse – 11/08/2022

Outline

- Introduction to the density waves of chromium
- SDW and CDW static orders through the spin-flip transition
- CDW behavior after laser-pulse excitation from fs to ns timescales
 - CDW decoupling at ns timescale
 - Dynamics of the CDW through the spin-sli
 - Threshold effect for CDW excitation
- Summary and perspectives

Outline

- Introduction to the density waves of chromium
- SDW and CDW static orders through the spin-flip transition
- CDW behavior after laser-pulse excitation from fs to ns timescales
 - CDW decoupling at ns timescale
 - Dynamics of the CDW through the spin-slip
 - Threshold effect for CDW excitation
- Summary and perspectives

Correlated electron systems: a rich world

A SDW transition in a simple metal

SDW in a 3D metal: a peculiar Fermi surface nesting

For T<T_N: AFM + SDW along <001>: Periodic modulation of |m|Two transitions : $T_N = 311K$

 $T_{SF}^{N} = 123K$

Cr Fermi surface

SDW does not come alone : CDW also appears at 2Q

In x-ray diffraction (for single-Q sample):

Evans et al., Science 295, 1042 (2002)

How does the CDW appear?

SDW: modulation with wavevector Q + harmonics nQ.

- n even: charge component

- n odd: spin component

2 successive nesting: - electron-hole \rightarrow SDW - hole-hole \rightarrow CDW

Young and Sokoloff, J. Phys. F: Metal Phys., 4, 1304 (1974)

Magnetostriction

The SDW creates a strain wave at 2Q

It explains the Spin-Flip Transition at T=123K

Cowan, J. Phys. F: Metal Phys., 8, 423 (1978)

We use novel techniques to get a new vision of CDW/SDW coupling in Cr: *coherent x-ray diffraction* and *time-resolved x-ray diffraction*

X-ray beam properties at large scale instruments

Outline

- Introduction to the density waves of chromium
- SDW and CDW static orders through the spin-flip transition
- CDW behavior after laser-pulse excitation from fs to ns timescales
 - CDW decoupling at ns timescale
 - Dynamics of the CDW through the spin-sli
 - Threshold effect for CDW excitation
- Summary and perspectives

SDW and CDW through the spin-flip transition

Evans et al., Science 295, 1042 (2002)

Bulk samples used in our studies

Single-Q truncated pyramid

Multi-Q square sample

Static SDW and CDW : two very different orders

Coherent and simultaneous x-ray diffraction on CDW and SDW reflections

SDW : perfect order with infinite correlation lengths CDW : many phase defects with sub-micrometer correlation lengths

Not the same amount of defects on CDW and SDW: Not in agreement with CDW formation through magnetistrictive coupling

➔ To get more information on the coupling: compare their dynamics of formation
➔ Laser Pump – x-ray probe diffraction experiment to perform this

Jacques et al. PRB **89**, 245127 (2014)

CDW through the spin-slip transition – a clear structural change

Outline

- Introduction to the density waves of chromium
- SDW and CDW static orders through the spin-flip transition
- CDW behavior after laser-pulse excitation from fs to ns timescales
 - CDW decoupling at ns timescale
 - Dynamics of the CDW through the spin-sli
 - Threshold effect for CDW excitation
- Summary and perspectives

ps time-resolved x-ray diffraction @ CRISTAL, Soleil Synchrotron

Multi-Q chromium sample

X-rays:

- 7keV
- 100nm penetration
- Detection: XPAD 3.2

Laser:

- 800nm, 30fs
- Up to 6.2mJ/pulse
- spot diameter: 2mm
- Rep rate: 1kHz

Time evolution of CDW and atomic lattice

A different temporal evolution of the rotational component

Real space picture of out-of-equilibrium system

V. Jacques et al., PRL 117, 156401 (2016)

- CDW expands within time resolution and recontracts after 2ns
- Tilt takes place at longer timescales (2-100 ns)

Tilt \rightarrow CDW decouples from atomic lattice \rightarrow CDW able to slide in chromium?

ps time-resolved x-ray diffraction @ CRISTAL, Soleil Synchrotron

→ Tilt of the CDW due to strain gradient depending on laser position

fs time-resolved x-ray diffraction @ FXE, European XFEL

X-rays

- 1 bunch/train
- 30fs x-ray pulses
- E = 5.989 keV
- 10µm spot

Nearly - Colinear and grazing incidence of x-ray and laser beams

X-ray exit window kapton (125µm)

Laser

- 30fs pulses
- 800 nm
- 10µm spot

Time-resolved measurement of the CDW through the spin-flip

- 3 successive steps :
 - 1. Ultrafast decay (~100fs)
 - 2. Partial recovery (~1ps)
 - 3. Longer-time decay (>1ps)
- \rightarrow CDW excitation
- \rightarrow CDW reapparition
- \rightarrow start of thermal transfer

Dynamics of step 2 (CDW reapparition) is different (longer) near Spin-Flip temperature

Time-sequence: excitation process, dislocations, decoupling

- 1. Excitation process <100 fs: most probably athermal excitations above gap (150 meV)
- 2. CDW partial recovery > 1 ps
- 3. Few ps: thermal effects : Debye-Waller + heat diffusion.

Debye Waller $\rightarrow \Delta a/a \sim 2.10^{-4} < experimental resolution <math>\Delta q/q = 3.94.10^{-4}$

4. Within 500 ps: q_{cdw} change \rightarrow Dislocations involved?

Parlinski, PRB **35**, 8680 (1987)

5. Tilt above 1 ns most probably to introduction of a strain-gradient by laser pulse

Threshold fluence for CDW excitation in multi-Q sample

Summary and perspectives

- Static SDW and CDW have very different correlation length ξ
 - SDW : $\xi_{SDW} \rightarrow \infty$
 - CDW : $\xi_{CDW} < 1 \mu m$
- CDW through the spin-flip transition :
 - CDW domains are preserved but CDW 'feels' the transition :
 - correlation length decreases
 - Amplitude decreases
 - After laser excitation : CDW partial recovery dynamics is different at SFT
- **CDW decoupling from lattice** ~2ns after laser excitation, due to strain gradient
- Threshold fluence for excitation of the CDW
- > Need to probe the SDW dynamics in the same conditions as CDW.
- Get more XFEL beamtime !

Acknowledgements

D. Le Bolloc'h

D. Ghoneim

- A. Gallo-Frantz
- S. Ravy

D. Carbone, D. Mannix

C. Laulhé P. Fertey F. Legrand

European

P. Zalden F. Ardana-Lamas C. Milne M. Biednov K. Kazarian

E. Bellec T. Schülli H. Djazouli

Thank you for your attention