ECRYS-2022

Low-temperature magnetoresistance in o-TaS₃ and (TaSe₄)₂I in nonlinear conduction regime

I.A. Cohn¹, A.A. Maizlakh¹, O.A. Sobolevskiy², A.S. Usoltsev², and <u>S.V. Zaitsev-Zotov¹</u>

Kotelnikov IRE RAS, Moscow Lebedev Physical Institute of RAS, Moscow

16th of August, 2022

Outline

- Motivation
- Magnetoresistance in (TaSe₄)₂I
 - Thin crystals
 - Bulky crystals
 - Conclusion
- Magnetoresistance in *o*-TaS₃
 - Short crystals
 - Long crystals
 - Conclusion

Motivation: Magnetoresistance of quasi-1D Weyl semimetal (TaSe₄)₂I in the CDW state

[D. Yan and C. Felser, Ann.Rev.Cond.Mat.Phys. 2017]

Weyl semimetals:

- The absence of inversion or time reverse symmetry
- Chiral electrons (not helical as in topological insulators)
- Negative longitude magnetoresistance as a feature of Weyl semimetals

[W. Shi *et al.*, A charge-density-wave topological semimetal, Nature Physics, **17**, 381 (2021); J. Gooth, *et al.*, Axionic CDW in the Weyl semimetal (TaSe₄)₂I, Nature **575**, 315 (2019)]

ECRYS-2022 16th of August, 2022

Motivation: Magnetoresistance of quasi-1D Weyl semimetal (TaSe₄)₂I in the CDW state

[J. Gooth, *et al.*, Axionic CDW in the Weyl semimetal (TaSe₄)₂I, Nature **575**, 315 (2019)]

Our doubts:

- There is the Peierls gap ~ 0.2 eV, so no Weyl semimetal features
- Too much Joulie heating (60 mW)
- One order magnetoresistance in the CDW without quasiparticle magnetoresistance breaks the scaling law!

Scaling law: $\sigma_{CDW}(T) \propto \sigma_q(T)$ [XJ Zhang, NP Ong PRL (1985); RM Fleming *et al.* PRB(1986)]

ECRYS-2022 16th of August, 2022

Our first attempt: Magnetoresistance of quasi-1D Weyl semimetal (TaSe₄)₂I in various CDW motion regimes

Two-contact study. Joulie heating << 1 µW (almost 4 orders smaller)

[IA Cohn, *et al.*, JETP Letters **112**, 88 (2020)]

ECRYS-2022 16th of August, 2022

Our first attempt: Magnetoresistance of quasi-1D Weyl semimetal (TaSe₄)₂I in various CDW motion regimes

Two-contact study:

- Joulie heating << 1 µW
- No chiral anomaly (the absence of negative MR was also observed in [A. Sinchenko *et al.*, APL **120**, 063102 (2022)])
- Surprising weak localization like behavior in the CDW sliding regime (weak localization is not expected for the CDW)

[IA Cohn, et al., JETP Letters 112, 88 (2020)]

ECRYS-2022 16th of August, 2022

Our first attempt: Magnetoresistance of quasi-1D Weyl semimetal (TaSe₄)₂I in various CDW motion regimes

ECRYS-2022 16th of August, 2022

Preliminary summary

If no overheating:

- No giant negative longitudinal magnetoresistance
- Dislocations are not responsible for negative magnetoresistance
- Small magnetic-field effect on CDW conduction is present
- Combination of localization-like and positive parabolic magnetoresistance
- Orientation-independent positive parabolic magnetoresistance
- Orientation-dependent localization-like dependence

Second attempt: 4-probe measurements of bulk (TaSe₄)₂I crystal in high magnetic fields

ECRYS-2022 16th of August, 2022

Second attempt: 4-probe measurements of bulk (TaSe₄)₂I crystal in high magnetic fields

ECRYS-2022 16th of August, 2022

Instabilities in I-V curves

Filamentary current in systems with S-shaped I-V curve

Festkörperprobleme 30 (1990)

Current Filaments and Nonlinear Oscillations in n-GaAs

Albert Brandl and Wilhelm Prettl

Institut für Angewandte Physik, Universität Regensburg, D-8400 Regensburg, Federal Republic of Germany

Fig. 2 Current-voltage characteristics for various applied magnetic fields B at a temperature T = 4.2 K. Hatched areas mark the extent of oscillatory regimes (from bottom-left to top-right inclined hatching denotes recording direction to increasing current, from top-left to bottom-right inclined hatching denotes decreasing current.

ECRYS-2022 16th of August, 2022

Filamentary current in systems with S-shaped I-V curve in transverse magnetic field

t (μs)

[F.-J. Niedernostheide,
J. Hirschinger, W. Prettl,
V. Nova k, H. Kostial
PRB (1998)]

ECRYS-2022 16th of August, 2022

Possible trivial explanation

Joule overheating in the contact area

- H || J Magnetic field stabilizes the current filament inside the sample
- H ⊥J Magnetic field press the current fiament to the sample surface
- Sample-dependent behavior

ECRYS-2022 16th of August, 2022

Summary for (TaSe₄)₂I

- Negative magnetoresistance may result from interaction of overheatinduced filamentary current with magnetic field (no direct evidence yet)
 In the absence of overheating:
- Small magnetoresistance (~ 1%)
- Sum of positive parabolic and negative/positive localization/antilocalizationlike magnetoresistance

Our third attempt: study of topologically trivial material o-TaS₃

- Material with chain-like structure
- Metal-dielectric transition at $T_P = 220 \text{ K}$
- Activation conduction with activation energy 800 K at 220 K < T < 100 K, 400 K at 100 K < T < 40 K, and hopping at T < 40 K

T. Takoshima et al., Solid State Commun. 35, 911 (1980)

M.E. Itkis, F.Ya. Nad' 1990 J. Phys.: Cond. Mat. 2, 8327 (1980)

ECRYS-2022 16th of August, 2022

Low-temperature nonlinear conduction in *o*-TaS₃

SVZZ, PRL 71, 605 (1993)

ECRYS-2022 16th of August, 2022

Zero magnetic field

ECRYS-2022 16th of August, 2022

Magnetoresistance in o-TaS₃ (**H** \perp **J**)

- A few % negative MR at large voltage
 - Temperature dependence is weak
 - The linearity disappears at higher temperatures
- Positive low-field MR
 - Strong temperature dependence

ECRYS-2022 16th of August, 2022

Magnetoresistance of o-TaS₃(**H** || **J**)

- Smaller signal
- Negative MR at high E
- Positive MR at Iow E and T

ECRYS-2022 16th of August, 2022

Summary of experimental data

- High V region:
 - Negative MR close to linear at low T
 - Parabolic negative MR at high T

- Low V region:
 - Positive parabolic MR
 - Strong temperature dependence

Magnetoresistance in q-1D CDW conductors

$$J_{tot} = \sigma_{lin}E + J_{BackFlow} + J_{CDW}$$

 $J_{cdw} >> J_{BackFlow} >> \sigma_{lin}E$ at the lowest
temperatures

ECRYS-2022 16th of August, 2022

Quasiparticles: electric filed dependent potential relief

We see that conduction scenario depends on the electric field E and temperature T:

- Low *T*:
 - Low *E*: positive parabolic (exponential) magnetoresistance due to magneticfield induced shrinking of the wave functions of localised states, $\ln(\delta \rho / \rho) \propto B^2$ [BI Shklovskii, AL Efros 1979]
 - High E: linear negative magnetoresistance (various possibilities)
- High *T*: parabolic negative MR Zeeman splitting results in magnetic field induced suppression of the Peierls gap $\delta \Delta(B) \propto B^2$.

$$\frac{\delta\rho_{\Delta}}{\rho_{q}} = -\frac{1}{2} \left(\frac{\mu_{B}B}{kT}\right)^{2} + O\left(\frac{\mu_{B}B}{kT}\right)^{4}$$

~ 5% @ 5 T, 10 K [T. Tiedje, *et al.*, Can. J. Phys **53**, 1593 (1975)]

ECRYS-2022 16th of August, 2022

Magnetoresistance in hopping regime

 Interference effects [VL Nguen, BZ Spivak, and BI Shklovski, JETP (1985); AV Shumilin and VI Kozub, PRB (2012)]

ECRYS-2022 16th of August, 2022

Magnetoresistance of sliding CDW

What we see:

- MR of the CDW looks like MR of hopping conduction of quasiparticles
 What is strange:
- CDW contribution >> quasiparticle one, quasiparticle MR is shunted
 What is known:
- Energy dissipation of sliding CDW is provided by quasiparticles. => MR of quasiparticles results in MR of sliding CDW

What we conclude:

- The CDW "amplifies" magnetoresistance of quasiparticles **What is strange:**
- Why such a scaling exists in the CDW creep regime?

ECRYS-2022 16th of August, 2022

Magnetoresistance in q-1D CDW conductors

- *R_c* contact resistance (possible dielectric barrier, phase-slip voltage, carrier injection)
- R_{CDW} CDW channel (is described usually in terms of CDW current)
- R_{bf} back-flow current will be neglecting ($J_{bf} \ll J_{CDW}$)
- R_q quasiparticle resistance $R_q >> R_{CDW}(J_{bf} << J_{CDW})$

ECRYS-2022 16th of August, 2022

Contact contribution

T = 2.9 K

o-TaS₃ Two segments

- 0.5 mm (short)
- 5 mm (long)

- Positive MR is a contact effect
 - There is negative MR in sliding regime
 - There is no MR in creeping regime.

Thus MR is not a consequence of modification of the CDW by magnetic field but results from modification of its kinetic coefficients

ECRYS-2022 16th of August, 2022

Conclusion

- Positive parabolic MR is a contact phenomena
- Magnetoresistance in CDW sliding regime results from magnetoresistance of quasiparticles
- There is no MR in CDW creep regime

Thank you for attention!

Financial support from RSF (grant #21-72-20114) is acknowledged

ECRYS-2022 16th of August, 2022