

ESRF | The European Synchrotron

Electron-phonon interaction as seen in diffuse and inelastic scattering

Alexeï Bosak

European Synchrotron Radiation Facility Grenoble, France

Page 2 ECRYS-2022 | Cargèse, Corse

The Elephant's Child et al.

✓ Diffuse and inelastic x-ray scattering

✓ Bad and good nesting with biased examples

TDS and lattice dynamics

TDS intensity $\sim 1/\omega^2$

 $I(\vec{Q}) \propto \sum_{j=1}^{3N} \frac{1}{\omega_j} \operatorname{coth}\left(\frac{\hbar\omega_j}{2kT}\right) \left| \sum_{d=1}^N f_d(Q) \exp(-W_d(\vec{Q}) + i\vec{Q}\cdot\vec{d})(\vec{Q}\cdot\hat{\sigma}_d^j(\vec{q})) M_d^{-1/2} \right|^2$

LE JOURNAL DE PHYSIQUE ET LE RADIUM.

SÉRIE VIII, TOME X, MARS 1949.

DIFFUSION DES RAYONS X DANS L'ALUMINIUM PAR LES ONDES D'AGITATION THERMIQUE

Par Pн. OLMER. Assistant à la Faculté des Sciences de Paris.

X-ray tube + point detector since 1948

ID28 hardware

beamlines

ISSN 1600-5775

A new diffractometer for diffuse scattering studies on the ID28 beamline at the ESRF

A. Girard,^a* T. Nguyen-Thanh,^b S. M. Souliou,^b M. Stekiel,^a W. Morgenroth,^a L. Paolasini,^b A. Minelli,^b D. Gambetti,^b B. Winkler^a and A. Bosak^b*

Diffuse scattering and IXS

Diffuse scattering:

- Roadmaps for IXS measurements
- Identification of diffuse features
- Validation of lattice dynamics/disorder models

New ID28 diffractometer

C(311)[splitter]-Si(422) monochromator 0.52-0.98 Å

flux ~1012 ph/s @ 17.8 keV

focal spot down to 20x40 μm

SPONSORED BY THE

Federal Ministry of Education and Research

BMBF 05K13RF2

user operation from September 2016

The European Synchrotron

Zinc metal

[A. Bosak et al., PRL 103, 076403 (2009)]

Zinc metal

Zinc metal

Free electron model: $k_F = q/2 = 1.57 \text{ Å}^{-1}$ => 2 electrons / Zn atom

RTe₃

[with P. Quemerais, P. Monceau, E. Lorenzo, P. Rodier, L. Ortega, A. Sinchenko, E. Bellec]

Diffuse scattering in RTe₃

 $ErTe_3$, $TbTe_3$, $GdTe_3$ all look the same above T_{CDW}

Diffuse scattering in ErTe₃

- ErTe₃, TbTe₃, GdTe₃ all look the same below T_{CDW1}
- Deviation from sinus modulation
- Suspicious contribution from planar defects

*RTe*₃ – *no nesting behind CDW*

FIG. 6. (Color online) A diagram showing the imaginary (left) and real (right) parts of the susceptibility as a function of q_x, q_y , with $q_z=0$. The arrow connects the strongest peak in the imaginary part, located at \mathbf{q}_{nest} , to its corresponding position in the real part. In the real part, the nesting peak is absent and \mathbf{q}_{CDW} dominates the spectrum, indicating the importance of states away from E_F .

[M.D. Johannes and I.I. Mazin, PRB 77, 165135 (2008)]

RTe₃ - nesting behind CDW

$\chi^{ij}(\boldsymbol{q}) = \sum_{k} \frac{n_F[E^i(\boldsymbol{k})] - n_F[E^j(\boldsymbol{k}+\boldsymbol{q})]}{E^i(\boldsymbol{k}) - E^j(\boldsymbol{k}+\boldsymbol{q})}$

RTe₃ - nesting behind CDW

Page 17 ECRYS-2022 | Cargèse, Corse

LaAgSb₂

[A. Bosak et al., Phys. Rev. Res. 3, 033020 (2021)]

$LaAgSb_2$

[X. Shi, P. Richard, K. Wang, M. Liu, C.E. Matt, N. Xu, R.S. Dhaka, Z. Ristic, T. Qian, Y.-F. Yang, C. Petrovic, M. Shi, and H. Ding, Observation of Dirac-like band dispersion in LaAgSb₂, Phys. Rev. B **93**, 081105 (2016)]

Diffuse scattering in LaAgSb₂

to CDW satellites up to 7th order

diffuse tubes with $\kappa_x \sim 30$ nm

 $\tau_1 \sim 0.026 \ a^*$ $\tau_1 \sim 0.026 \ a^* + \tau_2' = 1/6 \ c^*$

Inelastic scattering in LaAgSb₂

Normalized Intensity (arb. units)

Diffuse features are inelastic

True Kohn anomaly

Soft phonon mechanism

What is behind?

Choosing good band

Choosing good band

1 "good" band

Susceptibility

$$\chi^{ij}(\boldsymbol{q}) = \sum_{k} \frac{n_F[E^i(\boldsymbol{k})] - n_F[E^j(\boldsymbol{k}+\boldsymbol{q})]}{E^i(\boldsymbol{k}) - E^j(\boldsymbol{k}+\boldsymbol{q})}$$

Nesting behind transitions

 χ_{total} χ_{33}

All band contributions are equal, but some band contributions are more equal than others

Pseudo-Dirac dispersion

FIG. 8. Electronic band structure of LaAgSb₂ in the vicinity of the Dirac-type points. Band crossings with linear dispersive bands appear along the high-symmetry lines M- Γ and A-Z at points (a) $K_1 = (k_1, k_1, 0)$ with $k_1 = 0.1920$ and (b) $K_2 = (k_2, k_2, 0.5)$ with $k_2 = 0.2028$, respectively. (c) Band dispersion along parallel to the *z* axis across K1 (c) and K2 (d), and along an orthogonal direction in the *xy* plane ($\delta = 0.05$).

NbSe₂

[with P. Rodiere, M. Leroux]

Page 27 ECRYS-2022 | Cargèse, Corse

NbSe₂ – no nesting behind CDW

FIG. 5. (Color online) The noninteracting susceptibility of NbSe₂. (a) The imaginary part exhibits FS nesting driven peaks at $\mathbf{Q} = (\frac{1}{3}, \frac{1}{3}, 0)$. The plane at the bottom is a guide for the eye and corresponds to the lowest value of $\text{Im}\chi_0$. (b) The real part has very weak peaks at $\mathbf{Q}_{CDW} = (\frac{1}{3}, 0, 0)$ that come from energy intervals away from E_F (see text). The plane corresponds to the lowest value of $\text{Re}\chi_0$, which is also the density of states at the Fermi level.

[Johannes et al., PRB 73, 205102 (2006)]

FIG. 4. (a) Calculated 3D FS. Capital letters denote highsymmetry points of the Brillouin zone. White arrows connect parts of the inner K pocket, where nesting was proposed [14] and CDW hotspots were reported [15]. (b) Calculated electronic joint density of states (eJDOS) corresponding to the FS shown in (a).

[Weber et al., PRB 97, 235122 (2018)]

*NbSe*₂ – *nesting behind CDW*

OK, no clear features at \textbf{q}_{CDW} in total χ

High degree of similarity for selected interband nesting

Not only q_{CDW} is reproduced, but 2D/3D shape of Kohn anomaly

TaS₂

[with J. Geck, A. Korshunov]

Page 31 ECRYS-2022 | Cargèse, Corse

TaS₂ – no nesting behind CDW

- Nice background of soft phonons responsible for CDW transition
- No nesting can be taken responsible for this softening

Conclusions

- DS helps to locate soft phonon features beyond of simple spots
- DS shape is more discriminating than just q_{CDW}
- Nesting and EPC are NOT mutually excluding
- It helps to combine DS with IXS
- (ID28 ESRF beamline offers tandem use of methods)

TOMORROW

A mystical land where 99% of all human productivity, motivation and achievement is stored.

proposal submission deadline 12.09.2022

Zinc Fermi surface and nesting picture

