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Kinetics of phase transitions in quantum systems: 
Bose condensates, Superconductors, CDW, etc  
for the complex order parameter 𝜼 
 

From microscopics (Green Functions, Gorkov and Keldysh technics, etc) 
 

to Gross-Pitaevskii for bosons 
or TDGL (time dependent Ginzburg Landau) for fermions 
phenomenology for 𝜼 alone – the follow-up carriers are integrated. 
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Symmetry breaking and multiple fluids 

𝝏𝜼

𝝏𝒕
= −

𝜹𝑭 

𝜹𝜼
 

Thermodynamics of classical phase transitions 
Landau-Ginzburg free energy functional for the order parameter 

𝑭(𝜼) 



Collective effects related to the phase degeneracy 
 

• Frohlich conduction by the collective sliding. 

• Topological defects: solitons, dislocations (electronic vortices).  

• Phase slips = instantons = spacio-temporary vortices 

• Conversion among normal and condensed electrons. 
(to release the fracton fate from the vortex) 

While the phase velocity or its deformation is the principle ingredient, 
no collective current can be set in without deformations of  
the CDW amplitude A(x,t), particularly with A passing though zero 
within the vortex core or the phase-slip event.  



nucleations 

traces of A=0 

Numerical modeling of nonstationary processes in CDWs 
within the TDGL phenomenology (+ electric field) 
T. Yi, A. Rojo-Bravo, N. Kirova and SB. 

The result is as spectacular as it is an ambiguity ! 
The TDGL approach is principally deficient here. 

Many vortices appear temporarily in the course of the evolution. 
For that run, only one will be left. 



 

CDW=Acos(2KFx+ φ)  complex order parameters 𝜼 =𝚿= A exp[i]  
 

Degeneracy in the phase  hence static vortices = dislocations,  
phase slips = instantons = (x,t) vortices 
 

Spinons as amplitude solitons (kinks in A) 

At the nominal amplitude A=1: 

the collective density           nc=∂x /π   - CDW dilatation 

the collective current           jc=- ∂t /π 
 

The charge conservation law is satisfied automatically ! 
 

   
𝜕

𝜕𝑥
 nc + 

𝜕

𝜕𝑡
 jc =

𝜕

𝜕𝑥
 ∂t+ 

𝜕

𝜕𝑡
 (-∂x)≡0 
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  Ginzburg-Landau – like model 

    8/)()(/
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int nFnArdH x

)exp(  iA
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Only extrinsic (external to the CDW, from other bands) carriers nex  
are taken explicitly. In the GL spirit, the intrinsic carriers  
(in the gap region)  are integrated out, their effect is hidden  
in the CDW amplitude A=|| and then parameters 

equation 

 - electric potential,  
n=nex – concentration of normal carriers, F is their free energy 
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Well established  and works for stationary state and as a tool to reach it. 
Takes explicitly the extrinsic carriers (not interacting with the CDW) 

Restrictions: 

The intrinsic carriers have been integrated out and come into the model 
only via the order parameter amplitude A and repated parameters. 

Major problem:  

Violation of the local charge conservation for the condensate . 

In our case  
A(x,y,t)cnst 

0
22




















t

A

xtx

A

dt

dn 


x

A
nc










2

t

A
j c










2

automatically if A = const 

0










x

j

t

n

dt

dn cc

Hidden problems with  the TDGL model for CDW 

Way of resolution: keep normal carriers in hand and decompose n,j 

WRONG 
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More general scheme : 
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=(+,- ) - electronic wave function components near ±pF  
decomposed in right and left moving fermions  
ei   _ order parameter 
 and Ax  - scalar and vector potential, 
vF – Fermi velocity 

Not convenient: the gap Δ is loaded with the essentially variable  
x,t dependent factor exp(±i ϕ) 
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Chiral transformation: 
/2ie   

 

/ 2F xe e v      / / / 2x x F te cA e cA v   

𝑒𝐸 = −𝜕𝑥 + 𝜕𝑡𝐴𝑥 → 𝐹 = 𝑒𝐸+ (𝜕𝑡
2 − 𝜕𝑥

2)/2 

The gap Δ is unloaded from the phase factor,  
we arrive at a semiconductor model, 
but in expense of elongating the applied potentials: 

actually puts the electrons to the breathing frame of shifted  
Fermi momentum and Fermi energy: δPF= 𝝏𝒙 /𝟐 → δEF=ℏ vF/2𝝏𝒙  
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F – the chiral invariant effective electric field is felt by electrons. 
Resulting energy, collective charge and current, etc.  
looks to be functions of entire F only.  
E.g. the perturbed energy is expressed via the dielectric  

permittivity ε of a semiconductor with the gap ∆ : 
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As correctly derived as wrong in result:  
misses or distorts all expected contributions from the CDW phase – 
a semiconductor does not slide. 
What was wrong?  
Missed non-perturbative contribution known in field theory as the 
“chiral anomaly” (rem. Krive for CDWs, Yakovenko for FISDWs) 
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Resolution:  the whole expression has been lost 
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Chiral anomaly 

The contribution of normal carriers erases from the T=0 anomalous 
action erasing it down to zero at Tc when A0, ρcA2 

On top of perturbational part 
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The chiral anomaly appears already above the CDW – in the normal metal 
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The non-linearized Schroedinger eq. in WKB approximation 

The most principle property of a conductor: expulsion 
of the electric field at the screening length r0 
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- the DOS 

From quantum mechanics - the Tomas-Fermi procedure: 

n~ 
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When we first linearize the spectrum and decompose the wave 
function 
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No density response to the potential already  
at one-particle level, hence no field screening  

xi e E       

With C=cnst – the potential affects only the phase  
but no more the amplitude of the wave function 

The chiral anomaly is invoked to restore the normality 

By the necessary but premature linearization we loose  
the possibility to change the density2  for any wave function 
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But need a mechanism for nin , nin  to compensate ∂ at A→0 to yield: 

Expressions for total density and current conserve number of particles 
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That will come implicitly from counter-charges, 
counter- or backflow currents (rem. Littlewood, Artemenko) 
which react to CDW bringing compensating contributions  -ρn ∂φ/π 
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Expect A2 –  
actually 1. 
 Non analytic in Ψ  
terms come from 
the chiral anomaly. 

nin=n=ne-nh  “intrinsic” carriers – those which participate in CDW 

Local electro-neutrality approximation n=-∂xφ/π 
- the superconductivity form of the GL energy 
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The limit of the local electro-neutrality r0→0  
together with the infinite normal conductivity. 

Curiously, no commonly assumed longitudinal phase rigidity             
It is hidden in the term ∂xΦ implicitly, via  relations.  

Coulomb hardening (rem. Kirova talk) looks intuitive,  
but where is the driving force?  
The drive comes only from the boundary conditions for Φ transferred to 
the phase via the local relations of Φ and  ∂φ  mediated by n. 
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Electro-neutrality at a finite normal conductivity at D=1: 

Serial CDW and normal resistivities         Current driving force: 
(Total current)/(normal conduct.) 

Static elastic force:  
gradient of the normal chem. potential 
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Nonanalytic dependence on the amplitude requires new  
more complicated numerical studies. 

We still can run up to nucleation of vortices at  a surface,  
rem. more in N. Kirova talk. 
But we cannot trace proliferation of vortices as before. 
A price for no explicit compensation of diverging ∂ by vanishing A2 
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Results for numerical solving of partial diff. eqs. 
for a substantial simplified free energy form. 

Sequence of phase slips – spacio-temporary vortices –  
around the amplitude nodes. 
It sets in near sample boundaries allowing for the mean phase velocity 

amplitude phase Single x,t vortex 
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Beyond quasi-1D and CDWs, e.g. for polaronic 
crystals 

u – vector of unit cell displacements 
ν – units’  filling factor 

Need to bridge the elastic theory and inter-cell kinetics 
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 Chiral transformations with account for chiral anomaly  
were applied to the sliding CDW model  

 Two-fluid hydrodynamics was constructed for the order 
parameter and the normal liquid 

 Topologically nontrivial dynamics appears under applied fields 
or charge injection 

 The numeric procedure needs to be stabilized for the 
nonanalytic eqs. 

 The problems of glide and climb should be considered 

Conclusion and perspective. 


