Vector-Chiral Multiferroic β-TeVO₄:

Control of a Polar Order via Magnetic Field

Tomislav Ivek

Group for Advanced Electron Materials, Cryogenic Centre, IF Zagreb, Croatia

INSTITUT ZA FIZIKU

Martina Dragičević

Željko Rapljenović

David Rivas Góngora

Mirta Herak

Matej Pregelj

Andrej Zorko

Denis Arčon* * also with University of Ljubljana

Helmuth Berger – sample synthesis

HRZZ IP-2018-01-2730 HRZZ IP-2013-11-1011

User facilities:

- magnetotransport
- dc & ac magnetization, SQUID
- specific heat
- •
- temperatures down to ~ 10 mK
- magnetic fields up to 20 T
- hydrostatic pressure

Expanded cryogenic/LHe infrastructure

Prototype workshop

PI-3: Damir Dominko et al., Bulk-like thin films of blue bronze

PI-6: Virna Kisiček et al., Linear magnetoelectric effect in multidomain antiferromagnet Cu_3TeO_6

SDW: centrosymmetric

Cycloidal spiral: nonzero P

Proper screw spiral: not centrosymmetric, but often P=0

Khomskii, Physics 2, 20 (2009)

β -TeVO₄ – zig-zag spin chains

Frustrated, anisotropic interactions between V spins

Saul et al, Phys. Rev. B 89, 104414 (2014). Savina et al, Phys. Rev. B 84, 104447 (2011).

T_{N1} ~ 4.6 K

Savina et al., Phys. Rev. B 84, 104447 (2011).

Pregelj et al., Nat. Comm. 6 (2015), 10.1038/ncomms8255.

Savina et al. Low Temp. Phys 41, 283, (2015)

Pregelj et al., Phys. Rev. B 94, 081114 (2016)

Herak et al., Physical Review B 102, 024422 (2020).

Savina et al., Phys. Rev. B 84, 104447 (2011).

Pregelj et al., Nat. Comm. 6 (2015), 10.1038/ncomms8255.

Savina et al. Low Temp. Phys 41, 283, (2015)

Pregelj et al., Phys. Rev. B 94, 081114 (2016)

Herak et al., Physical Review B 102, 024422 (2020).

T_{N2} ~ 3.3 K

Savina et al., Phys. Rev. B 84, 104447 (2011).

Pregelj et al., Nat. Comm. 6 (2015), 10.1038/ncomms8255.

Savina et al. Low Temp. Phys 41, 283, (2015)

Pregelj et al., Phys. Rev. B 94, 081114 (2016)

Herak et al., Physical Review B 102, 024422 (2020).

 $T_{_{N2}} \sim 3.3 \text{ K}$

T_{N3} ~ 2.3 K

Savina et al., Phys. Rev. B 84, 104447 (2011).

Pregelj et al., Nat. Comm. 6 (2015), 10.1038/ncomms8255.

Savina et al. Low Temp. Phys 41, 283, (2015)

Pregelj et al., Phys. Rev. B 94, 081114 (2016)

Herak et al., Physical Review B 102, 024422 (2020).

Spin-stripe phase: "Wigglon" dynamics

A gapped, two-phason excitation

Pregelj et al., npj Quantum Materials 4, 22 (2019).

AC dielectric response

- Curie-Weiss-like peak at the vector-chiral phase transition
- Para-to-ferroelectric?

M. Pregelj et al., npj Quantum Materials 4, 22 (2019).

Static electric polarization

- **P**||*b*
- Ferroelectric hysteresis in the vector-chiral phase

M. Dragičević, et al., Phys. Rev. B 104, L121107 (2021)

Ferroelectric phase diagram

- Highly anisotropic response
- Matches the magnetic phase diagram
- Relation of FE to vector-chiral ordering?

Inverse Dzyaloshinskii-Moriya interaction

• Also found in: TbMnO₃, MnWO₃, MnSb₂S₄...

bc spiral ab spiral $P \neq 0$ P = 0

Not a linear magnetoelectric

P_{sat} does not depend significantly on H

Electric coercive field

- Coercive field: field required to set the polarization to zero
- Increasing *E*_c:
 - stronger pinning of domain walls,
 - weaker mobility of domain walls,
 - less wide domain walls
- Hysteresis width is not constant
- Promotion of VC phase hardens the FE!

Nonlinear magnetoelectric effect

- VC phase is **not fully developed** even at lowest temperatures: it is still susceptible to applied *H*!
- EHH term in free energy is consistent with IDM
- suppression of VC softens FE
- similar to TbMnO₃ or MnWO₄, but those compounds undergo polarization flop and field-induced spin reorientation with H

M. Dragičević, et al., Phys. Rev. B 104, L121107 (2021) M. Herak et al., PRB 102, 024422 (2020). K. Taniguchi et al., PRL 97, 097203 (2006).

Nonlinear magnetoelectric effect

. Dragicevic, et al., Phys. Rev. B 104, L121107 (2021) M. Herak et al., PRB 102, 024422 (2020). K. Taniguchi et al., PRL 97, 097203 (2006).

β -TeVO₄ – frustrated zig-zag spin chain

- Vector-chiral ground state is ferroelectric
- VC domain = FE domain
- Chiral-FE domain population is controlled via E
- Stability of chiral-FE information is controlled via H

M. Dragičević, et al., Phys. Rev. B 104, L121107 (2021)

Spin-stripe phase: µSR

Pregelj et al., npj Quantum Materials 4, 22 (2019).

Static electric polarization setup

- Sine signal generator Tabor 8023
 - Amplifier & transformer
 - Current preamp SR570
- Oscilloscope

Static electric polarization

Static electric polarization Sawyer-Tower circuit (home-made) 0-20 kV/cm

$$P \propto Q = \int I(t) dt$$

Ž. Rapljenović, D. Altus

Ε