Ultrafast breaking of spatial/time reversal symmetry by a single-cycle light-field in strongly correlated chargers/spins

Tohoku University

Shinichiro Iwai

Supported by JST-CREST JP19198318 Q-leap JPMXS0118067426

New pathway toward ultrafast control of correlated electrons

✓ Coherent modulation of electronic states (within scattering time window)

 α -(ET)₂I₃ (organic metal)

Dynamical localization Nature commun. 5, 5528(2014) PRB 2016, PRB(R)2017 κ -(ET)₂Cu[N(CN)₂]Br (SC)

Charge Synchronization Nature Photon.12, 474 (2018)

✓ Spatial/ time reversal symmetry breaking

 κ -(ET)₂Cu[N(CN)₂]Br (SC)

Nonlinear current in organics SC Nat. Commun.10, 1038 (2020)

(TMTTF)₂AsF₆ (Ferroelectric)

Enhance of correlation Phys. Rev. Res. 3, L032043(2021)

α -RuCl₃ (Spin liquid)

Ultrafast magnetization *Phys. Rev. Res. 4, L032032* (2022)

Polarization control by THz field

Outline

i) Introduction

 ✓ Optical responses of strongly correlated system
 ✓ *Time/energy scales of strongly correlated system* ✓ Coherent charge motion in correlated system (Coherent chare motion, Dynamical localization)
 ✓ 6-fs NIR pulse, CEP control/detection

PRL2010 Nat. commun. 2014 PRB 2016 PRB 2017(R) J. Phys. B 2018 (review)

ii) Stimulated emission in organic SC κ-ET salt

- \checkmark Ultrafast stimulated emission (SE) driven by strong field
- ✓ Quantum mechanical analysis (charge synchronization)
- ✓ Temperature dependence (anomaly around T_{SC}) Nat. Photon 2018

iii) SHG in κ-ET salt

- ✓ SHG induced by Petahertz no-scattering current (CEP sensitive)
- ✓ Enhancement of SHG near SC fluctuation
- ✓ Quantum mechanical analysis of unconventional SHG

Nat. Commun. 2020

Outline (continued) iv) Ultrafast magnetization in Kitaev spin-liquid a-RuCl₃

- ✓ Kitaev spin-liquid candidate a-RuCl₃
- ✓ Ultrafast mqgnetization (larger for $T>T_N$)
- ✓ Resonant effect to spin-orbit excitons
- ✓ Coherent carrier dynamics & theory

Phys. Rev. Res. 4, L032032 (2022) arXiv: 2207.03877

v) Summary & Future problems

✓ High-T_c Cuprates, Correlated Dirac semimetal (Iridates)…

Collaborators

Ultrafast & THz spectroscopy Tohoku U. H. Itoh, Y. Kawakami T. Amano, Y. Akamine, H. Ohashi

Samples and basic measurements (organic)

Okayama Univ. Sci. K. Yamamoto

IMR T. Sasaki

Nagoya Univ. Y. Nakamura,

H. Kishida IMS H. Yamamoto Univ. Stuttgurt M. Dressel

Itoh

T. Sasaki

H. Kishida

Kawakami

Amano

H. Yamamoto M. Dressel

Ohashi

(High-T_c superconducting cuprates)

Kyusyu sangyo University T. Nishizaki Tohoku University K. Ohgushi

Theory

Chuo Univ. N. Arakawa, K. Yonemitsu **TITEC Y. Murakami**

Tohoku, Univ. S. Ishihara

Supported by

JST-CREST JP19198318 *Q-leap* JPMXS0118067426

T. Nishizaki T. Ogushi

K. Yonemitsu

S. Ishihara

Photoinduced Insulator – Metal transition

25 years ago

Melting of Charge/Orbital order $PM \rightarrow FM$

Cavalleri et al. PRL 2001

Structural dynamics (XRD)

 (VO_2)

Photoinduced Mott transition

Gonokami, Koshihara eds. *JPSJ*Yonemitsu, Nasu *Phys. Rep.*Bosov, Averitt, Dressel et al., *RMP*Mihailovic et al. , *Advances in Physics*, 2016 Cavalleri et al. *Adv. in Opt. Photon.*Bosov, Averitt, Hsieh, *Nat. Matter*Koshihara et al. *Phys. Rep.*

Non equilibrium in correlated system

Aoki, Tsuji, Eckstein, Oka, Werner Rev. Mod. Phys. 86, 779 (2014).

✓ Limited degrees of freedom can work

✓ Electronic coherence survives (depends on material)

Optical freezing of charge motion

Insulating gap in time axis

Nature commun. 5, 5528(2014) PRB 95, 201106(R) (2017) PRB 93, 165126 (2016) J. Phys. B51, 174005(2018) (Review)

Dynamical localization

0

 $x=eE_0a/(\hbar\omega)$

Dynamical stabilization M. Bukovet al., *Advances in Physics*, **64**, 139(20

P. L. Kapitza, Soviet Phys. JETP, 21, 588(1951)

Dunlap, Kenkre, PRB(1986) Grossmann, Hanggi, PRL(1991) Kayanuma, Saito, PRA(2008)

6 fs NIR pulse (1.3 cycle, CEP stabilized)

6 fs NIR pulse (1.3 cycle, CEP stabilized)

Outline

i) Introduction

 ✓ Optical responses of strongly correlated system
 ✓ *Time/energy scales of strongly correlated system* ✓ Coherent charge motion in correlated system (Coherent chare motion, Dynamical localization)
 ✓ 6-fs NIR pulse, CEP control/detection

PRL2010 Nat. commun. 2014 PRB 2016 PRB 2017(R) J. Phys. B 2018 (review)

ii) Stimulated emission in organic SC κ-ET salt

- \checkmark Ultrafast stimulated emission (SE) driven by strong field
- ✓ Quantum mechanical analysis (charge synchronization)
- ✓ Temperature dependence (anomaly around T_{SC}) Nat. Photon 2018

iii) SHG in κ-ET salt

- ✓ SHG induced by Petahertz no-scattering current (CEP sensitive)
- ✓ Enhancement of SHG near SC fluctuation
- ✓ Quantum mechanical analysis of unconventional SHG

Nat. Commun. 2020

Excitation of superconductors

\checkmark Avoid increasing tempExcitation by light (NIR-Visible) \rightarrow low energy excitations \rightarrow rise of electron temp. (scattering) · Coherent exc. of Higgs mode (BCS)

Matsunaga, Shimano et al. Science 2014.

Photoinduced SC Cuprates, Organics

D. Faustii et al., Science 2011

M. Buzzi et al., PRX 10, 031028 (2020)

✓ Another approach

- e-e scattering time
 - $\cdot \sim 40$ fs h/(0.1 eV) organic SC
 - $\cdot \sim$ 4 fs or shorter ? High-T_c Cuprates

• 6 fs pulse can control electrons in no-scattering time window ?

Organic superconductor κ-(ET)₂Cu[N(CN)₂]Br

κ-(h-ET)₂Cu[N(CN)₂]Br (h-Br)

Reflectivity/Optical conductivity (*h*-Br) c.f. Faltermeier, Dressel *et al.*, PRB 76, 165113 (2007).

Tr. reflectivity($\Delta R/R$) & transmittance($\Delta T/T$)

✓ Same-color pump & probe

✓ New reflectivity peak 0.63 eV, at 10 fs (FID at 0.7 eV) ~200 % reflectivity increase !

✓ Lorentz analysis

Additional oscillator frequency: 0.61 eV damping: 0.04 eV

Double –pump & probe to detect coherence of the nonlinear charge osc.

Matsubara, Itatani, Yonemitsu, Koshihara, Onda et al., PRB89, 161102(R)(2014) Kimata, Kayanuma, Nakamura et al., PRB101, 174301(2020) Origin of the SE is coherent charge motion ?

Time dependent Schröedinger eq. (Yonemitsu)

2D ext. Hubbard model (16-site, ³/₄ filling) (Exact diagonalization)

$$H_{2D} = \sum_{\langle i,j \rangle \sigma} t_{ij} \left(c_{i,\sigma}^{+} c_{j,\sigma}^{+} + c_{j,\sigma}^{+} c_{i,\sigma}^{+} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow} + \sum_{\langle i,j \rangle} V_{ij} n_{i} n_{j}$$

Photoexcitation (Peierls phase)

$$c_{i,\sigma}^{+}c_{j,\sigma}^{-} \rightarrow \exp\left[\frac{ie}{\hbar c}\mathbf{r}_{ij}\cdot\mathbf{A}(t)\right]c_{i,\sigma}^{+}c_{j,\sigma}^{-}$$

Single-cycle pulse

$$A(t) = \frac{cF}{\omega} \Big[\cos(\omega t) - 1 \Big] \theta(t) \theta \left(\frac{2\pi}{\omega} - t \right) \Big]$$

Time evolution of charge density on a molecule

Yonemitsu, JPSJ87, 044708(2018).

Synchronization (entrainment)

Huygens's clock (cycloidal pendulum clock)

非線形同期振動の一般的理解 ✓Bipartite lattice ✓Bloch eq. (pseudospin) 電荷密度の差、電流密度、結合密度 ✓Hubbard model, spinless Fermion

Yonemitsu, Werner JPSJ89, 084701(2021)

M. Bennet et al., Proc. R. Soc. Lond. A 458, 563(2002) Huygens 1669

Kuramoto model (1975)

Anomaly at $T_{\rm SC}$

✓ Anomaly at 10 K ~T_{SC} (heating effect ~3 K) Nonlinear charge osc. (transient current) amplified by SC fluctuation

Outline

i) Introduction

 ✓ Optical responses of strongly correlated system
 ✓ *Time/energy scales of strongly correlated system* ✓ Coherent charge motion in correlated system (Coherent chare motion, Dynamical localization)
 ✓ 6-fs NIR pulse, CEP control/detection

PRL2010 Nat. commun. 2014 PRB 2016 PRB 2017(R) J. Phys. B 2018 (review)

ii) Stimulated emission in organic SC κ-ET salt

- \checkmark Ultrafast stimulated emission (SE) driven by strong field
- ✓ Quantum mechanical analysis (charge synchronization)
- ✓ Temperature dependence (anomaly around T_{SC}) Nat. Photon 2018

📫) SHG in κ-ET salt

- ✓ SHG induced by Petahertz no-scattering current (CEP sensitive)
- ✓ Enhancement of SHG near SC fluctuation
- ✓ Quantum mechanical analysis of unconventional SHG

Nat. Commun. 2020

SHG &THG in organic superconductor

- \checkmark SHG is not active (in perturbation)
- CEP (carrier-envelope phase) dependence
- ✓ Temperature dependence
- Polarization dependence
 - \rightarrow unconventional SHG

Current induced SHG

N-doped (direct gap) semiconductor (Density matrix theory)

APL67, 1113 (1995)

$$\mathbf{J} = -\sum_{\mathbf{k}} e\mathbf{v}(\mathbf{k})f(\mathbf{k}) = -\frac{e\hbar}{m_c}\sum_{\mathbf{k}} \mathbf{k}f(\mathbf{k})$$
$$\chi_{\mathbf{J}}^{(2)}(2\omega;\omega,\omega) = \frac{e^3}{4\epsilon_0 m_0^2 \mu \omega^4 (k_B T + i\hbar T_2^{-1})}$$
$$\times \sum_{\mathbf{k}} \mathbf{P}_{vc,\mathbf{k}}(\mathbf{k} \cdot \hat{\mathbf{e}})(\mathbf{P}_{cv,\mathbf{k}} \cdot \hat{\mathbf{e}})f(\mathbf{k})$$

*Breaking of spatial symmetry in the sense that the induced current can't be described as odd function of E(t)

Graphene (DC)

Graphene (THz)

Bykov et al.,M. Tokman et al.,PRB85, 121413 (2012)PRL. 99, 155411(2019)

Does osc. light field induce current ?

No ! *If ohm's low works Ohm's low* (with scattering)

If, we have no scattering, averaged current $\neq 0$

Carrier Envelope Phase (CEP)

 $E(t) = E_0(t)\sin(\omega t - \varphi_{CEP}) \qquad \varphi_{CEP} : CEP$ $J \propto v \propto \int_0^t E(t)dt$

 π

✓ J survives after the pulse (during scattering time window)

✓ Non-dissipative J is CEP sensitive One-cycle change in one-period

CEP dependence of SHG

Current is modulated by *f* . But, SHG can't distinguish direction of current (SHG is modulated by 2 *f*)

SHG is described by non-scattering current

Temperature dependences of SHG

 \checkmark SHG increases toward T_{SC}

SC fluctuation (T>T_{SC})
Lang et al., PRB49, 15227(1994)
Kobayashi et al., PRB89, 165141(2014)

Mckenzie., Science (1997)

✓ SHG is sensitive to SC fluctuation (reflecting the small working distance of non-scattering current? **Mean field theory (Prof. Yonemitsu)** \checkmark Hartree Fock (98x98), U=0.8, V=0, triangular lattice, \checkmark Hubbard model, Peierls phase ω =0.7 eV, E//c

Hubbard model (3/4 filled)

 $H = \sum_{\langle i,j \rangle \sigma} t_{ij} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$

Electric field of light: substitution $Sc_{i\sigma}^{\dagger}c_{j\sigma} \rightarrow \exp\left[\frac{ie}{\hbar c}r_{ij} \cdot A(t)\right]c_{i\sigma}^{\dagger}c_{j\sigma}$ with vector potential $A(t) = \theta(t)\frac{F}{\omega_{\text{fund}}}\left[\cos(\omega_{\text{fund}}t - \phi) - \cos\phi\right]$ current density $\mathbf{j}(t) = -\langle \frac{\partial H}{N\partial A} \rangle$ SHG and THG are evaluated as

ωJ : absolute value of Fourier transform of d*j*/d*t*) (500 cycle) **Mean field theory (Prof. Yonemitsu)** \checkmark Hartree Fock (98x98), U=0.8, V=0, triangular lattice, \checkmark Hubbard model, Peierls phase ω =0.7 eV, E//c

Summary Organic superconductor *h*-Br

Outline (continued) v) Ultrafast magnetization in Kitaev spin-liquid a-RuC

- ✓ Kitaev spin-liquid candidate a-RuCl₃
- ✓ Ultrafast mqgnetization (larger for $T>T_N$)
- \checkmark Resonant effect to spin-orbit excitons
- ✓ Coherent carrier dynamics & theory

Phys. Rev. Res. 4, L032032 (2022) arXiv: 2207.03877

v) Summary & Future problems

✓ High-T_c Cuprates, Correlated Dirac semimetal (Iridates)…

a-RuCl₃ : Spin-orbit assisted Mott insulator

✓ No magnetic order $(T>T_N=7K)$

described as Kitaev spin liquid
excited : Majorana Fermion
A. Kitaev, Ann. Phys. 2006

✓ Spin-orbit assisted Mott Insulator

• 1/2 filling is realized by SOI ($\lambda \sim 0.15 \text{ eV}$) Jackeli, Khaliullin PRL 2009

✓ Inter-site hopping *t* (between different t_{2g} orbitals (such as $d_{xz} - d_{yz}$) *Winter al. Phys. Rev.* B93, 214431(2016)

Sears et al., PRB 2015

Zig-zag AFM (T<T_N) Winter, Valenti et al., Nat. Commu 2017

Optical properties of a-RuCl₃

Objective

Modulating magnetic properties by excitation of spin-orbit excitations

✓ Resonant excitation by circular polarized light

Query Light-induced magnetization is possible via orbital moment? ✓ We expect that orbital moment is induced by inter-site charge hopping (bwteen different t_{2g} orbitals) ?

Experimental

Sample : a-RuCl₃(single crystal) $E \mid ab$ plane, thickness ~ 50 µm Temperature : 4 K - 20 K, 300 K ($T_N = 7-8 \text{ K}$) Oloo fs pulse (spot size 100 µm) Pump : 0.30, 0.62, 0.89 eV, (1.55 eV) $(0.1-4.0 \text{ mJ/cm}^2)$ \checkmark Circular (σ^+ , σ^-) polarization

Probe : 0.54-1.03 eV

✓ Libear polarization

O 6 fs pulse ΔR/R (charge dynamics)
 0.55 eV- 1 eV, 1mJ/cm²

Polarization rotation $\Delta \theta$

 \checkmark Ultrafast(\sim 100 fs) & large response (helicity sensitive) $\Delta \theta = 5^{\circ}$, t $\sim 50 \ \mu m$, 4mJ/cm² AFM(NiO) $\sim 1/20$ $\Delta \theta = 1.14^{\circ}, t = 0.1 \text{mm}, 10 \text{mJ/cm}^2$ Satoh et al., et al., PRL 2010 Paramagnet (TGG) $\sim 1/400$ $\Delta \theta = 0.15^{\circ}$, t=1mm, 3mJ/cm² Mikhaylovskiy et al., PRB 2012 ✓ Temperature dependence $\Delta \theta$ for T> T_N is larger $(\rightarrow next page)$ ✓Helicity-independent slow component (> 10 ps,) \rightarrow melting of AFM order

Light induced ultrafast magnetization (⊥ plane)

Temperature dependence (fast component)

✓ Reduction at T < T_N ?

opposit to the expected tendency in typical IFE in AFM & WFM (increase in $\Delta\theta$ below T_N)

New mechanism of light-induced magnetization ?

Excitation & detection energy dependence

Excitation energy dependence (Excitation spectrum of $\Delta \theta$)

Resonance effect to spin-orbit excitons

ΔR/R under Spin-orbit excitation

✓ Pump : S-O excitation (0.3, 0.62 eV)

- ✓ Probe : Mott-Hubbard transition
 - Bleaching of Mott-Hubbard transition under in-gap excitation
 - Linear response
 →2-photon abs. is ruled out

"Spin-orbit assisted Mott insulator" Plumb et al., PRB 90, 041112 (R) (2014)

Plumb *et al*., PRB 90, 041112 (R) (2014) Kim *et al*., PRL 117, 187201 (2016)

(a) 10 K \mathcal{E} 12 1.4 Photon Energy (eV) (b)0 17 K 0 ps 1.2 eV V8/2 (10,1) V8/2 (10,1) -1 $\Delta R/R (10^{-2})$ 2 3 1 0 I_{ex} (mJ/cm²) E_{pu} : 0.62 eV E_{pu} : 0.89 eV E_{pu}: -3 1.55 eV (x0.6) 1.2 1.4 Photon Energy (eV)

Time profile of $\Delta R/R$

✓ Ultrafast magnetization is related to the fast charge dynamics ?

Charge dynamics captured by 6 fs pulse AR/R measurement using 6 fs pulse (CEP locked)

✓ oscillation period ~ 40 fs
 (<shortest phonon period 100 fs)

 $\Leftrightarrow charge hopping t$ (0.1 eV=h/(40 fs))

 \rightarrow Coherent charge hopping between different t_{2q} orbitals?

dephasing time 60 fs ~ lifetime of magnetization

Magnetization is induced by the coherent charge motion between different t_{2q} (lifting orbital moment)

Opto-magneto effects in a-RuCl₃ (theory)

Quantum mechanical analysis (steady state) J. G. Rau et al., PRL112, 077204 (2014) H. –S. Kim et al., PRB93, 155143 (2016) S. M. Winter ate al., PRB 93, 214431 (2016)

✓ The result of numerical calculation shows that in-gap excitation is essential

✓Exact diagonalization (6-site) + time dependent Schrödinger equation • 3- orbital (d_{yz} , d_{xz} , d_{xy}) Hubbard model

$$H_{U} = U \sum_{i,a} n_{i,a,\uparrow} n_{i,a,\downarrow} + (U' - J_{\rm H}) \sum_{i,a < b,\sigma} n_{i,a,\sigma} n_{i,b,\sigma} + U' \sum_{i,a \neq b} n_{i,a,\uparrow} n_{i,b,\downarrow} -J_{\rm H} \sum_{i,a \neq b} c^{\dagger}_{i,a,\uparrow} c_{i,a,\downarrow} c^{\dagger}_{i,b,\downarrow} c_{i,b,\uparrow} + J_{\rm H} \sum_{i,a \neq b} c^{\dagger}_{i,a,\uparrow} c^{\dagger}_{i,a,\downarrow} c_{i,b,\downarrow} c_{i,b,\uparrow}$$

✓ Peierls substitution

• ω =0.3 eV, 0.6 eV (pulse width =100 fs)

Calculation of magnetization \perp ab-plane

High-frequency expansion in Floquet theory

$$H_{\rm F}^{(2)} \cong \frac{1}{\omega} J_1^2 \left(\frac{F_{\rm L(R)}}{\omega} \right) \left(\pm \sqrt{3} \right) (t_2 - t_4) [t_2 - t_4 + 2(t_3 - t_1)]$$

$$\times \sum_{i\sigma} \left(c_{i,yz,\sigma}^{\dagger} \quad c_{i,xz,\sigma}^{\dagger} \quad c_{i,xy,\sigma}^{\dagger} \right) \left(\begin{array}{cc} 0 & -i & i \\ i & 0 & -i \\ -i & i & 0 \end{array} \right) \left(\begin{array}{c} c_{i,yz,\sigma} \\ c_{i,xy,\sigma} \end{array} \right) \left(\begin{array}{c} c_{i,yz,\sigma} \\ c_{i,yz,\sigma} \end{array} \right) \left(\begin{array}{c} c_{i,yz,\sigma} \end{array} \right) \left(\begin{array}{c} c_{i,yz,\sigma} \end{array} \right$$

the second-lowest order of the high-frequency expansion

orbital moment

Spiral current drives magnetic moment

✓ Effective magnetic field is induced by charge hopping between different t_{2g} orbitals

Summary

✓ Helicity dependent polarization rotation ($\Delta \theta$) in α-RuCl₃ → 20 time larger than that of typical AF

- ✓ Increase of $\Delta\theta$ above T_N → opposite tendency from conventional IFE
- ✓ Resonant to spin-orbit excitons
- ✓ Possible scenario

 \rightarrow coherent charge motion between different t_{2g} orbitals such as d_{yz} - d_{xz} - d_{xy})

✓ Quantum mechanical analyses support the above mechanism

T. Amano et al., arXiv:2207.03877 Phys. Rev. Research 4, L032032 (2022)

Summary

Organic SC к-ET salt

Correlated charge motion

Synchronization

Current induced SHG

Linear response

Spin-orbit Mott insulator a-RuCl₃

SHG

j(t)

AF insulator AF insulator Kr(BEDT-TTF)₂Cu(N(CN)₂)Br Bandwidth

$v \propto \int_0^t E(t) dt$ Nat. Commun. 10, 1038 (2020)

 $\begin{array}{c} \begin{array}{c} & & & \\ & &$

Phys. Rev. Research 4, L032032 (2022) arXiv:2207.03877