

High-T_c superconductivity in 2D ruthenates: Relation to CDW/SDW

Sci. Rep. 10, 3462 (2020)

<u>Hiroyoshi Nobukane</u>

K. Yanagihara, Y. Kunisada, Y. Ogasawara, K. Isono, K. Nomura, K. Tanahashi, T. Nomura and S. Tanda

nobukane@sci.hokudai.ac.jp

2D layered materials: TMD and cuprates

X. Liu et al., Science 372, 1447 (2021)

2D materials: Triplet SC and DWs !?

Are there any two-dimensional materials in which triplet SC and DWs can be studied?

2D ruthenates: SC and FM

2D ruthenates: DWs

Layer number control in ruthenates

 $V(\mu V)$

H. Nobukane et al., SSC 149, 1212 (2009)

H. Nobukane et al., Sci. Rep. 7, 41291 (2017)

Layer number control in NbSe2 and graphene

NbSe₂ films

X. Xi et al., n.nano 10, 765 (2015)

Exotic states due to a negative pressure!

2D layer play a key part for studying ruthenate physics.

Our purpose

To study electric states from Mott insulator to superconductivity in Ca_2RuO_4 nanocrystals by reducing the number of layers

$\rho - T$ for different thicknesses

Thickness-tuned SIT

BKT transition in nano-Ca₂RuO₄

Enhanced superconductivity

Enhanced supercurrent

>

> Hysteresis behavior

Josephson critical current between chiral p-wave SCs

$$I_c(T) = aI_{c0} \ln\left(\frac{b\Delta}{T}\right)\sin\Phi$$

The superconductivity realizes the chiral p-wave state. PSJ (2002)

Resistance anomalies near 200 K

To clarify the diamagnetism, we performed magnetic measurements for powders consisting of nanoscale crystals.

Sample A : 5.2 mg Sample B : 2.6 mg Temperature: 2K~300K Magnetic field :-7T~+7T Performed by MPMS3

Magnetic properties

T_{Curie} = 180 K
Diamagnetic component

There are no phenomena that show such a giant diamagnetism other than superconductivity.

Enhanced diamagnetic components

Aligned magnetic domain

Coexistence of superconductivity and ferromagnetism.

Released distortion in nanocrystals

Bulk	Nanofilm		
	By reducing the layer number		
Distortion of RuO ₆ by a large number of layers	Reducing the number of layers releases distortions.		
Mott Ins. 🔳	High-Tc SC		

<u>First-principle calculation</u>

	a (Å)	b (Å)	c (Å)	Tilting (°)
Mono- layer	5.806	4.847	-	10.01
Bi- layer	5.719	5.049	11.692	11.06
Tri- layer	5.694	5.128	11.65	11.34
Bulk	5.592	5.253	11.548	11.65

"Flattening" and "<u>tilting</u>" are released in nanofilms.

Emergence of SC with negative pressure

First-principle calculation

	a (Å)	b (Å)	c (Å)	Tilting (゜)
Mono- layer	5.806	4.847	-	10.01
Bi- layer	5.719	5.049	11.692	11.06
Tri- layer	5.694	5.128	11.65	11.34
Bulk	5.592	5.253	11.548	11.65

"Flattening" and "<u>tilting</u>" are released in nanofilms.

Suppression of the distortion under the negative pressure is responsible for SC behavior in CRO nanofilms.

Electron **Ruthenates** 0 Hole CDW Singlet SDW **ô**

Triplet

SC

Najoranc

Research for ruthenate thin films reveals that new physics can be explored distinct from in MX_2 and cuprates.

