Signatures of a Pair Density Wave at High Magnetic Fields in Stripe-Ordered Cuprates

Dragana Popović

National High Magnetic Field Laboratory Florida State University, USA

Support: DMR-1307075, DMR-1707785, DMR-2104193 and NHMFL (NSF and the State of Florida)

Collaborators

Zhenzhong Shi 史振中 (now at Soochow Univ., China)

Paul G. Baity (now at Univ. of Glasgow, UK)

Jasminka Terzic (now at Western Kentucky Univ., USA)

Takao Sasagawa (Tokyo Institute of Technology, Japan)

LSCO, LESCO, LNSCO crystals

Copper-oxide high-temperature superconductors: Questions that we address

[Keimer et al., Nature 518, 179 (2015)]

- Nature of the ground state (if superconductivity is removed)?
- Interplay of charge and spin orders with cuprate superconductivity?
- Origin of the pseudogap regime?
- Role of the pair-density wave (PDW) superconductivity in cuprate physics?

Copper-oxide high-temperature superconductors

[Keimer et al., Nature 518, 179 (2015)]

Pseudogap, charge and spin orders, superconductivity...

⇒ Pair density wave (PDW):

superconducting (SC) order parameter is oscillatory in space; spatial average = zero

Review on PDW in cuprates and beyond:

D. Agterberg *et al., Annu. Rev. Condens. Matter Phys.* **11**, 231 (2020)

- Evidence for PDW has been largely indirect
- **Broader relevance** of a PDW state to cuprate physics is an open question

Role of PDW in the physics of copper-oxide high-temperature superconductors?

- Needed: transport signatures of the PDW in the regime where superconductivity is destroyed by quantum phase fluctuations ($T \rightarrow 0$, high H)
- Study La-214 family: charge orders with strongest correlations, in the form of charge and spin stripes

Outline

- At what field does the superconductivity vanish?
 What is the value of the upper critical field H_{c2}?
 Vortex phase diagram
- Behavior for $H < H_{c2}$ in stripe-ordered cuprates: **Evidence of PDW** in the regime of SC phase fluctuations from $T > T_c^0$ in H=0 to $H=H_{c2}$ as $T \rightarrow 0$

Vortex phase diagram

At what field does the superconductivity vanish?
 What is the value of the upper critical field H_{c2}?
 Vortex phase diagram

[Blatter et al., Rev. Mod. Phys. 66, 1125 (1994)]

- Thermal fluctuations: Melting of the vortex lattice into a vortex liquid
- Vortex lattice suppressed to below the crossover line $H_{c2}(T)$
- Does the vortex liquid survive as $T \rightarrow 0$?

T-H phase diagram in underdoped cuprates

• At what field does the superconductivity vanish? What is the value of H_{c2} ?

Vortex phase diagram

Linear and nonlinear transport:

Qualitatively the same regardless of the presence of charge or spin orders

- LSCO (spin order; LTO) [X. Shi et al., Nature Phys. 10, 437 (2014)]
- spin- and charge-striped Nd-LSCO (LTT),
 Eu-LSCO (LTT) [Z. Shi *et al.*, Sci. Adv. 6, eaay8946 (2020)]
 and La_{2-x}Ba_xCuO₄ (LBCO) [Y. Li *et al.*, Sci. Adv. 5, eaav7686 (2019)]
- spin- and charge-striped **Fe-LSCO** (LTO) [B. K. Pokharel *et al.,* unpublished]
- Bi-2201 (charge order; tetragonal)
- [J. Terzic et al., unpublished]
- **YBCO** (no spin order, static charge order at high *H*)

[Y.-T. Hsu *et al.,* PNAS 118, e2021216118 (2021); Y.-T. Hsu *et al.,* PNAS 118, e2016275118 (2021)]

Stripe-ordered Eu-LSCO and Nd-LSCO

Stripe-ordered Eu-LSCO and Nd-LSCO

La_{1.8-x}Eu_{0.2}Sr_xCuO₄ and La_{1.6-x}Nd_{0.4}Sr_xCuO₄

La_{1.8-x}Eu_{0.2}Sr_xCuO₄ (LESCO): x=0.10

 T_c^{0} = (5.7 ± 0.3) K (where in-plane resistivity ρ_{ab} goes to zero)

 T_{SO} ~ 15 K, T_{CO} ~ 40 K, $T_{pseudogap}$ ~ 175 K

(Data pts from the literature)

Vortex phase diagram of stripe-ordered Eu-LSCO and Nd-LSCO

Vortex phase diagram of stripe-ordered Eu-LSCO and Nd-LSCO

- Superconductivity is destroyed by quantum phase fluctuations $(T \rightarrow 0, high H)$
- *H*=0: Onset of phase fluctuations at $T \sim$ a few T_c^0

Pair density wave in the presence of stripe order

Layer decoupling: Pair density wave scenario

Orthogonally-stacked antiphase SC leads to frustration of interlayer Josephson coupling and layer decoupling

[E. Berg et al., PRL 99, 127003 (2007)]

Effect reduced for doping away from x=1/8 and with increasing disorder

Experimental evidence consistent with the PDW in cuprates

Dynamical layer **decoupling in H=0 for x=1/8**:

- transport in LBCO: Q. Li *et al.*, PRL 99, 067001 (2007)
- optical measurements in La_{1.85-y}Nd_ySr_{0.15}CuO₄:
 S. Tajima *et al.*, PRL 86, 500 (2001)

Dynamical layer **decoupling by** *H* (stabilizes spin stripes) **for** *x* **away from 1/8**:

- transport in underdoped LBCO: Z. Stegen *et al.*, PRB 87, 064509 (2013)
- optical measurements in underdoped LSCO: A. A. Schafgans *et al.*, PRL 104, 157002 (2010)

• Bi₂Sr₂CaCu₂O₈: STM, H=0

[Hamidian *et al.*, Nature 532, 343 (2016); Du *et al.*, Nature 580, 65 (2020)]

Testing theoretical predictions consequences of a PDW SC state:

[E. Fradkin et al., Rev. Mod. Phys. 87, 457 (2015)]

- Charge order modulation (CDW 1Q order) in vortex halos in Bi₂Sr₂CaCu₂O₈; STM, H/T_c⁰ ≤ 0.1 T/K (vortex solid regime)
 - [S. D. Edkins et al., Science 364, 976 (2019)]

Probing interlayer frustration

La-214: reorienting spins in spin stripes in every other plane by an in-plane magnetic field

FIG. 5. (Color online) Model for spin structure of site-centered stripes as a function of field. (\bullet , \bigcirc) Half-filled charge stripes. Stripes in adjacent planes at z=0 and 0.5 are perpendicular. (a) Spin structure for H=0, (b) **H**||[100], and (c) **H**||[110].

[M. Hücker *et al.,* Phys. Rev. B 78, 214507 (2008); M. Hücker *et al.,* Phys. Rev. B 70, 214515 (2004)] A consequence of the PDW SC state:

⇒ In-plane *H* relieves the interlayer frustration, i.e. reduces the anisotropy

[E. Berg *et al.*, PRL 99, 127003 (2007);
E. Fradkin *et al.*, Rev. Mod. Phys. 87, 457 (2015)]

This is what we observed in Eu-LSCO and Nd-LSCO

Eu-LSCO: Anisotropy ratio $\rho_{\rm c}/\rho_{\rm ab}$ in *H*=0

Same T_c^0 for ρ_{ab} and ρ_c : onset of 3D SC

Evolution of the anisotropy with temperature and perpendicular field

• Field-independent anisotropy ratio ρ_c / ρ_{ab} for $H_{peak} \approx H_{c2} < H$

Evolution of the anisotropy with temperature and perpendicular field

Two-step temperature dependence of the in-plane resistivity ρ_{ab}

Two-step temperature dependence of the resistivity: Other 2D superconducting systems

Josephson junction (JJ) arrays

[S. Eley et al., Nature Phys. 8, 59 (2012)]

Two-step temperature dependence of the in-plane resistivity ρ_{ab} : Striped cuprates

Onset of SC correlations at T>T_c⁰

At low *T*, increasing H_{\perp} destroys superconductivity in planes by quantum phase fluctuations of Josephson-coupled SC islands

\Rightarrow Intrinsically granular SC state

[A. Kapitulnik *et al.,* Rev. Mod. Phys. 91, 011002 (2019)]

Schematic (T, H_{\perp}) phase diagram of stripe-ordered La-214 cuprates

• Consistent with the presence of local, PDW correlations (in puddles) that compete with the uniform SC order at $T_c^0 < T < (2-6)T_c^0$; become dominant at high enough $H_{\perp} < H_{c2}$ as $T \rightarrow 0$

Probing interlayer frustration: angle-dependent measurements of ρ_{ab} (H) and ρ_{c} (H)

Field perpendicular to the CuO₂ planes: $H_{\perp} = H \cos\theta$ Field parallel to the CuO₂ planes (i.e. to *a* or *b* axis): $H_{\parallel} = H \sin\theta$ $H_{\parallel} = H_{\perp} \tan\theta$

Probing interlayer frustration: effect of the in-plane (parallel) magnetic field on $\rho_{\rm c}/\rho_{\rm ab}$

Signatures of a PDW in stripe-ordered Eu-LSCO and Nd-LSCO

[Zhenzhong Shi et al., Nat. Commun. 11, 3323 (2020)]

- Probed the previously inaccessible high H_{\perp}/T_c^0 and $T \rightarrow 0$ regime dominated by quantum phase fluctuations and confirmed a theoretical prediction
- \Rightarrow Several signatures of a PDW for $T_c^0 < T < (2-6)T_c^0 \ll T_{\text{pseudogap}}$ and $H_{\perp} < H_{c2}$

- Results do **not** support a scenario in which the PDW correlations are responsible for the pseudogap
- Observed in the regime with many vortices, **consistent with the STM evidence** for PDW in vortex halos in Bi₂Sr₂CaCu₂O₈ vortex solid
- [S. D. Edkins *et al.,* Science 364, 976 (2019)]

Conclusions

Robust vortex phase diagram for underdoped cuprates

- > *T-H* phase diagram, H_{c2}
- > Key role of quantum phase fluctuations and disorder as $T \rightarrow 0$
- > No qualitative effect of charge and spin orders on the vortex phase diagram

Stripe-ordered cuprates:

■ Signatures of a PDW from $T > T_c^0$ in H=0 to $H=H_{c2}$ as $T \rightarrow 0$

(in the regime of SC phase fluctuations)

 Results do **not** support a scenario in which the PDW correlations are responsible for the pseudogap

