

IECHNISCHE

Institut für Festkörperphysik

WIFN

τu

WIEN Institut für Festkörperphysik

Teresa Le Hank Wang Yongkang Luo

Stuart E. Brown

University of California Los Angeles

Pustogow Spectroscopy Lab

Ass. Prof. Andrej Pustogow

INSTITUT FÜR FESTKÖRPERPHYSIK INSTITUTE OF SOLID STATE PHYSICS

Technische Universität Wien Vienna University of Technology

Alexander von Humboldt

Stiftung/Foundation

Björn Miksch **Ralph Hübner Marc Scheffler**

Martin Dressel

Universität Stuttgart

Organic Superconductor

1991

Pustogow Spectroscopy Lab

2022-08-19

Andrej Pustogow

κ-(BEDT-TTF)₂Cu₂(CN)₃

Ca 0 0

Institut für Festkörperphysik

1991

Superconductivity at 2.8 K and 1.5 kbar in κ -(BEDT-TTF)₂Cu₂(CN)₃: The First Organic Superconductor Containing a Polymeric Copper Cyanide Anion

Quantum Spin Liquid?

2003

- no antiferromagnetism
- quantum spin liquid?

Balents, Nature 464, 199-208 (2010)

Pustogow Spectroscopy Lab

2022-08-19

Mott Insulator

repulsive interaction

- periodic arrangement
- 1 particle per site

Pustogow Spectroscopy Lab

2022-08-19

Mott Insulator - Magnetism

 $H = -\mathbf{t} \sum_{\langle ij \rangle, \sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + H.c. \right) + \mathbf{U} \sum_{i} n_{i\uparrow} n_{i\downarrow}$

antiferromagnetic interactions

itinerant exchange mechanism

$$J \propto \frac{t^2}{U}$$

Pustogow Spectroscopy Lab

2022-08-19

Mott Insulator - Magnetism

Hansmann et al., Phys. Status Solidi B 250, 1251–1264 (2013)

Fermi liquid Pressure

metal

High-T_c Cuprates Keimer et al., Nature 518, 179 (2015)

Kagawa et al., Nature 436, 534 (2005)

2022-08-19

Pustogow Spectroscopy Lab

Mott Insulator - Magnetism

antiferromagnetic interactions

Pustogow Spectroscopy Lab

2022-08-19

Geometrical Frustration

frustration in real life

geometrical frustration in physics

- suppression of magnetic order
- quantum spin liquid
- exotic excitations (spinons)

Pustogow Spectroscopy Lab

2022-08-19

Geometrical Frustration

Balents, Nature 464, 199-208 (2010)

geometrical frustration in physics

- suppression of magnetic order
- quantum spin liquid
- exotic excitations (spinons)

Pustogow Spectroscopy Lab

2022-08-19

Andrej Pustogow

honeycomb

kagome

triangular

Frustrated Magnetism

Valence Bond Solid

(e.g. Spin-Peierls in 1D)

spinon: neutral *S* = ½ excitation

Balents, Nature 464, 199-208 (2010)

mobile spinons ('gapless') similar to electrons in a metal, but without charge

Pustogow Spectroscopy Lab

2022-08-19

Frustrated Magnetism

https://www.tuwien.at/en/tu-wien/news/news/neue-messungen-stellen-spin-fluessigkeiten-in-frage

Balents, Nature 464, 199-208 (2010)

mobile spinons ('gapless') similar to electrons in a metal, but without charge

Pustogow Spectroscopy Lab

2022-08-19

Pustogow, Solids 3, 93-110 (2022)

Pustogow Spectroscopy Lab

2022-08-19

Shimizu et al., PRL 91, 107001 (2003)

94.7 156.6

36.1 K

94.6

94.5

Frequency (MHz)

94.4

Pustogow Spectroscopy Lab

2022-08-19

Andrej Pustogow

4.9 K

10.3 K

14.1 K

<u>18.1 K</u>

22.1 K

25.1 K

27.2 K

30.2 K

164 K

156.7 156.8 156.9 157.0

Frequency (MHz)

κ -(BEDT-TTF)₂Cu₂(CN)₃

TECHNISCHE UNIVERSITÄT

WIEN

TU

spin susceptibility

(K)

Т

20

10

156 MHz

NMR

30

¹⁶

UNIVERSITÄT WIEN Institut für Festkörperphysik

 κ -(BEDT-TTF)₂Cu₂(CN)₃

Pustogow Spectroscopy Lab

2022-08-19

- no antiferromagnetism ٠
- χ does not drop to zero • towards $T \rightarrow 0$
- linear term of specific heat $C \propto \gamma T$
- gapless spinons?

Shimizu et al., PRL 91, 107001 (2003)

κ -(BEDT-TTF)₂Cu₂(CN)₃

Pustogow Spectroscopy Lab

2022-08-19

- no antiferromagnetism
- χ does not drop to zero towards $T \rightarrow 0$
- linear term of specific heat C ∝ γT
- gapless spinons?

Shimizu et al., PRL 91, 107001 (2003)

к-(BEDT-TTF)₂Cu₂(CN)₃: "6 K Anomaly"

Yamashita et al., Nat. Phys. 4, 459-462 (2008)

thermal expansion

Manna et al., PRL 104, 016403 (2010)

thermal transport

Yamashita et al., Nat. Phys. 5, 44–47 (2009)

Pustogow Spectroscopy Lab

2022-08-19

к-(BEDT-TTF)₂Cu₂(CN)₃: Impurity Spins

NMR properties $T < T^*$

- field-dependent peak in $1/T_1$
- stretched exponential relaxation

magnetic response at $T < T^*$ dominated by impurity spins

Pustogow *et al., PRB* **101**, 140401(R) (2020) Solids **3**, 93–110 (2022)

2022-08-19

Pustogow Spectroscopy Lab

[data from: Shimizu et al., PRL 91, 107001 (2003)]

NMR properties $T < T^*$

- field-dependent peak in $1/T_1$
- stretched exponential relaxation

Pustogow et al., PRB **101**, 140401(R) (2020) Solids **3**, 93–110 (2022)

Pustogow Spectroscopy Lab

2022-08-19

к-(BEDT-TTF)₂Cu₂(CN)₃: Impurity Spins

ESR properties $T < T^*$

- additional satellite peak appears
- strong angle dependence (dipole-dipole coupling)

UNIVERSITÄT WIEN Institut für Festkörperphysik

magnetic response at $T < T^*$ dominated by impurity spins

Pustogow et al., PRB 101, 140401(R) (2020) Solids 3, 93-110 (2022)

Pustogow Spectroscopy Lab

2022-08-19

κ-(BEDT-TTF)₂Cu₂(CN)₃: Impurity Spins

ESR properties $T < T^*$

- additional satellite peak appears ٠
- strong angle dependence ٠ (dipole-dipole coupling)

к-(BEDT-TTF)₂Cu₂(CN)₃: Impurity Spins

ESR properties $T < T^*$

- additional satellite peak appears
- strong angle dependence (dipole-dipole coupling)

Miksch et al., Science 372, 276-279 (2021)

Pustogow Spectroscopy Lab

2022-08-19

к-(BEDT-TTF)₂Cu₂(CN)₃: Spin Gap

REPORT

MAGNETISM

Gapped magnetic ground state in quantum spin liquid candidate $\kappa\text{-(BEDT-TTF)}_2\text{Cu}_2(\text{CN})_3$

Björn Miksch¹, Andrej Pustogow^{1,2}, Mojtaba Javaheri Rahim¹, Andrey A. Bardin³, Kazushi Kanoda⁴, John A. Schlueter^{5,6}, Ralph Hübner¹, Marc Scheffler¹, Martin Dressel¹*

Miksch et al., Science 372, 276-279 (2021)

Pustogow Spectroscopy Lab

2022-08-19

Spin Gap – Susceptibility

REPORT

MAGNETISM

Björn Miksch¹, Andrej Pustogow^{1,2}, Mojtaba Javaheri Rahim¹, Andrey A. Bardin³, Kazushi Kanoda⁴, John A. Schlueter^{5,6}, Ralph Hübner¹, Marc Scheffler¹, Martin Dressel^{1,*}

Pustogow Spectroscopy Lab

2022-08-19

 $\chi_{bulk} = \chi_s + \chi_{impurity}$

Pustogow, Solids 3, 93–110 (2022)

Shimizu et al., PRL 91, 107001 (2003)

Spin Gap – Thermal Transport

к-(BEDT-TTF)₂Cu₂(CN)₃

Pustogow, Solids 3, 93-110 (2022)

Pustogow Spectroscopy Lab

2022-08-19

Ando et al., PRB 58, R2913 (1998)

Pustogow Spectroscopy Lab

2022-08-19

Spin Gap – Thermal Expansion

Pustogow Spectroscopy Lab

Spin Gap – Thermal Expansion

Chasing the spin gap through the phase diagram of a frustrated Mott insulator

A. Pustogow,¹ Y. Kawasugi,^{2,3} H. Sakurakoji,² and N. Tajima^{2,3} under review (2022)

Manna et al., *PRB* **89**, 045113 (2014)

Spin Gap – Valence Bond Solid

Chasing the spin gap through the phase diagram of a frustrated Mott insulator

A. Pustogow,¹ Y. Kawasugi,^{2,3} H. Sakurakoji,² and N. Tajima^{2,3} under review (2022)

Shimizu et al., PRL 99, 256403 (2007) Manna et al., PRB 89, 045113 (2014)

Spin Gap – Valence Bond Solid

Chasing the spin gap through the phase diagram of a frustrated Mott insulator

A. Pustogow,¹ Y. Kawasugi,^{2,3} H. Sakurakoji,² and N. Tajima^{2,3} under review (2022)

Shimizu *et al., PRL* **99**, 256403 (2007) Manna et al., *PRB* **89**, 045113 (2014)

2022-08-19

Pustogow Spectroscopy Lab

Mott insulator metal VBS SC P Unconventional superconductivity 2

Ground State – Valence Bond Solid

Chasing the spin gap through the phase diagram of a frustrated Mott insulator

A. Pustogow,¹ Y. Kawasugi,^{2,3} H. Sakurakoji,² and N. Tajima^{2,3} under review (2022)

Pustogow Spectroscopy Lab

2022-08-19

1991

Superconductivity at 2.8 K and 1.5 kbar in κ -(BEDT-TTF)₂Cu₂(CN)₃: The First Organic Superconductor Containing a Polymeric Copper Cyanide Anion

Quantum Spin Liquid?

2003

- no antiferromagnetism
- quantum spin liquid?

Balents, Nature 464, 199-208 (2010)

Pustogow Spectroscopy Lab

2022-08-19

TECHNISCHE UNIVERSITÄT WIEN Institut für Festkörperphysik

1991

Superconductivity at 2.8 K and 1.5 kbar in κ -(BEDT-TTF)₂Cu₂(CN)₃: The First Organic Superconductor Containing a Polymeric Copper Cyanide Anion

2003

- no antiferromagnetism ٠
- quantum spin liquid? ۲

REPORT

MAGNETISM

Science

Gapped magnetic ground state in quantum spin liquid candidate κ -(BEDT-TTF)₂Cu₂(CN)₃

Miksch, Pustogow et al., Science 372, 276-279 (2021)

Pustogow Spectroscopy Lab

2022-08-19

WIEN Institut für Festkörperphysik

solids

Review Thirty-Year Anniversary of κ -(BEDT-TTF)₂Cu₂(CN)₃: Reconciling the Spin Gap in a Spin-Liquid Candidate

Andrej Pustogow D

Solids 3, 93–110 (2022)

26. April 2021

New measurements call spin liquids into question

Conclusion

https://www.tuwien.at/en/tu-wien/news/news/neue-messungen-stellen-spin-fluessigkeiten-in-frage

2021 Science

REPORT

MAGNETISM

Gapped magnetic ground state in quantum spin liquid candidate κ-(BEDT-TTF)₂Cu₂(CN)₃

Miksch, Pustogow et al., Science 372, 276-279 (2021)

Pustogow Spectroscopy Lab

2022-08-19