Anchoring of polymers by traps randomly placed on a line

S. Nechaev 1, 2, G. Oshanin 3, A. Blumen 4

Journal of Statistical Physics 98 (2000) 281-303

We study dynamics of a Rouse polymer chain, which diffuses in a three-dimensional space under the constraint that one of its ends, referred to as the slip-link, may move only along a one-dimensional line containing randomly placed, immobile, perfect traps. For such a model we compute exactly the time evolution of the probability $P_{sl}(t)$ that the chain slip-link will not encounter any of the traps until time $t$ and consequently, that until this time the chain will remain mobile.

  • 1. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI - Paris Sud
  • 2. L.D. Landau Institute for Theoretical Physics,
    Landau Institute for Theoretical Physics
  • 3. Laboratoire de Physique Théorique des Liquides (LPTL),
    CNRS : UMR7600 – Université Paris VI - Pierre et Marie Curie
  • 4. Université de Fribourg,
    Université de Fribourg