Casimir forces between arbitrary compact objects: Scalar and electromagnetic field

T. Emig 1, 2, R. L. Jaffe 3

Journal of Physics A General Physics 41 (2008) 164001

We develop an exact method for computing the Casimir energy between arbitrary compact objects, both with boundary conditions for a scalar field and dielectrics or perfect conductors for the electromagnetic field. The energy is obtained as an interaction between multipoles, generated by quantum source or current fluctuations. The objects' shape and composition enter only through their scattering matrices. The result is exact when all multipoles are included, and converges rapidly. A low frequency expansion yields the energy as a series in the ratio of the objects' size to their separation. As examples, we obtain this series for two spheres with Robin boundary conditions for a scalar field and dielectric spheres for the electromagnetic field. The full interaction at all separations is obtained for spheres with Robin boundary conditions and for perfectly conducting spheres.

  • 1. Institut für Theoretische Physik,
    Universität zu Köln
  • 2. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI - Paris Sud
  • 3. Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics,
    Aucune