Classical intermittency and quantum Anderson transition

Antonio M. Garcia-Garcia 1

Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 69 (2004) 066216

We investigate the quantum properties of 1D quantum systems whose classical counterpart presents intermittency. The spectral correlations are expressed in terms of the eigenvalues of an anomalous diffusion operator by using recent semiclassical techniques. For certain values of the parameters the spectral properties of our model show similarities with those of a disordered system at the Anderson transition. In Hamiltonian systems, intermittency is closely related to the presence of cantori in the classical phase space. We suggest, based on this relation, that our findings may be relevant for the description of the spectral correlations of (non-KAM) Hamiltonians with a classical phase space filled by cantori. Finally we discuss the extension of our results to higher dimensions and their relation to Anderson models with long range hopping.

  • 1. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI - Paris Sud