Dispersive hydrodynamics of nonlinear polarization waves in two-component Bose-Einstein condensates

T. Congy 1 A. M. Kamchatnov 2 N. Pavloff 1

SciPost Physics, 2016, 1 (1), pp.006

We study one dimensional mixtures of two-component Bose-Einstein condensates in the limit where the intra-species and inter-species interaction constants are very close. Near the mixing-demixing transition the polarization and the density dynamics decouple. We study the nonlinear polarization waves, show that they obey a universal (i.e., parameter free) dynamical description, identify a new type of algebraic soliton, explicitly write simple wave solutions, and study the Gurevich-Pitaevskii problem in this context.

  • 1. LPTMS - Laboratoire de Physique Théorique et Modèles Statistiques
  • 2. Institute of Spectroscopy