Einstein relation in superdiffusive systems

Giacomo Gradenigo 1, Alessandro Sarracino 1, Dario Villamaina 2, Angelo Vulpiani 3

Journal of Statistical Mechanics: Theory and Experiment (2012) L06001

We study the Einstein relation between diffusion and response to an external field in systems showing superdiffusion. In particular, we investigate a continuous time Levy walk where the velocity remains constant for a time \tau, with distribution P(\tau) \tau^{-g}. At varying g the diffusion can be standard or anomalous; in spite of this, if in the unperturbed system a current is absent, the Einstein relation holds. In the case where a current is present the scenario is more complicated and the usual Einstein relation fails. This suggests that the main ingredient for the breaking of the Einstein relation is not the anomalous diffusion but the presence of a mean drift (current).

  • 1. Istituto dei Sistemi Complessi--CNR,
    Università Sapienza
  • 2. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI - Paris Sud
  • 3. Dipartimento di Fisica,
    Università Sapienza