Entangling many-body bound states with propagative modes in Bose-Hubbard systems

Mario Collura 1, Helge Aufderheide 2, Guillaume Roux 3, Dragi Karevski 1

Physical Review A 86 (2012) 013615

The quantum evolution of a cloud of bosons initially localized on part of a one dimensional optical lattice and suddenly subjected to a linear ramp is studied, realizing a quantum analog of the 'Galileo ramp' experiment. The main remarkable effects of this realistic setup are revealed using analytical and numerical methods. Only part of the particles are ejected for a high enough ramp, while the others remain self-trapped. Then, the trapped density profile displays rich dynamics with Josephson-like oscillations around a plateau. This setup, by coupling bound states to propagative modes, creates two diverging condensates for which the entanglement is computed and related to the equilibrium one. Further, we address the role of integrability on the entanglement and on the damping and thermalization of simple observables.

  • 1. Institut Jean Lamour : Matériaux -Métallurgie - Nanosciences - Plasma - Surfaces (IJL),
    Université Henri Poincaré - Nancy I – CNRS : UMR7198 – Institut National Polytechnique de Lorraine (INPL) – Université Paul Verlaine - Metz
  • 2. Department Biological Physics,
    Max-Planck-Institute
  • 3. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI - Paris Sud