Finite-Temperature Free Fermions and the Kardar-Parisi-Zhang Equation at Finite Time

David S. Dean 1 Pierre Le Doussal 2 Satya N. Majumdar 3 Grégory Schehr 3

Physical Review Letters, American Physical Society, 2015, 114 (11), pp.110402 (1-5). <10.1103/PhysRevLett.114.110402>

We consider the system of $N$ one-dimensional free fermions confined by a harmonic well $V(x) = m\omega^2 {x^2}/{2}$ at finite inverse temperature $\beta = 1/T$. The average density of fermions $\rho_N(x,T)$ at position $x$ is derived. For $N \gg 1$ and $\beta \sim {\cal O}(1/N)$, $\rho_N(x,T)$ is described by a scaling function interpolating between a Gaussian at high temperature, for $\beta \ll 1/N$, and the Wigner semi-circle law at low temperature, for $\beta \gg N^{-1}$. In the latter regime, we unveil a scaling limit, for $\beta {\hbar \omega}= b N^{-1/3}$, where the fluctuations close to the edge of the support, at $x \sim \pm \sqrt{2\hbar N/(m\omega)}$, are described by a limiting kernel $K^{\rm ff}_b(s,s')$ that depends continuously on $b$ and is a generalization of the Airy kernel, found in the Gaussian Unitary Ensemble of random matrices. Remarkably, exactly the same kernel $K^{\rm ff}_b(s,s')$ arises in the exact solution of the Kardar-Parisi-Zhang (KPZ) equation in 1+1 dimensions at finite time $t$, with the correspondence $t= b^3$.

  • 1. LOMA - Laboratoire Ondes et Matière d'Aquitaine
  • 2. LPTENS - Laboratoire de Physique Théorique de l'ENS
  • 3. LPTMS - Laboratoire de Physique Théorique et Modèles Statistiques