Hyperbolic disordered ensembles of random matrices

O. Bohigas 1, M. P. Pato 2

Physical Review E 84 (2011) 031121

Using the simple procedure, recently introduced, of dividing Gaussian matrices by a positive random variable, a family of random matrices is generated characterized by a behavior ruled by the generalized hyperbolic distribution. The spectral density evolves from the semi-circle law to a Gaussian-like behavior while concomitantly the local fluctuations show a transition from the Wigner-Dyson to the Poisson statistics. Long range statistics such as number variance exhibit large fluctuations typical of non-ergodic ensembles.

  • 1. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI - Paris Sud
  • 2. Instituto de Fisica,
    Universidade de São Paulo