Monochromatic path crossing exponents and graph connectivity in 2D percolation

Jesper-Lykke Jacobsen 1, Paul Zinn-Justin 1

Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 66 (2002) 055102

We consider the fractal dimensions d_k of the k-connected part of percolation clusters in two dimensions, generalizing the cluster (k=1) and backbone (k=2) dimensions. The codimensions X_k = 2-d_k describe the asymptotic decay of the probabilities P(r,R) ~ (r/R)^{X_k} that an annulus of radii r<>1 is traversed by k disjoint paths, all living on the percolation clusters. Using a transfer matrix approach, we obtain numerical results for X_k, k<=6. They are well fitted by the Ansatz X_k = 1/12 k^2 + 1/48 k + (1-k)C, with C = 0.0181+-0.0006.

  • 1. Laboratoire de Physique Théorique et Hautes Energies (LPTHE),
    CNRS : UMR7589 – Université Paris VI - Pierre et Marie Curie – Université Paris VII - Paris Diderot