Non-equilibrium relaxation of an elastic string in random media

Alejandro B. Kolton 1, A. Rosso 2, Thierry Giamarchi 1

We study the relaxation of an elastic string in a two dimensional pinning landscape using Langevin dynamics simulations. The relaxation of a line, initially flat, is characterized by a growing length, $L(t)$, separating the equilibrated short length scales from the flat long distance geometry that keep memory of the initial condition. We find that, in the long time limit, $L(t)$ has a non--algebraic growth, consistent with thermally activated jumps over barriers with power law scaling, $U(L) \\sim L^\\theta$.

  • 1. DPMC-MaNEP, University of Geneva,
    University of Geneva
  • 2. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI - Paris Sud