Numerical Calculation of the Functional renormalization group fixed-point functions at the depinning transition

Alberto Rosso 1, Pierre Le Doussal 2, Kay Joerg Wiese 2

Physical Review B 75 (2007) 22020a

We compute numerically the sequence of successive pinned configurations of an elastic line pulled quasi-statically by a spring in a random bond (RB) and random field (RF) potential. Measuring the fluctuations of the center of mass of the line allows to obtain the functional renormalization group (FRG) functions at the depinning transition. The universal form of the second cumulant Delta(u) is found to have a linear cusp at the origin, to be identical for RB and RF, different from the statics, and in good agreement with 2-loop FRG. The cusp is due to avalanches, which we visualize. Avalanches also produce a cusp in the third cumulant, whose universal form is obtained, as predicted by FRG.

  • 1. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI - Paris Sud
  • 2. Laboratoire de Physique Théorique de l'ENS (LPTENS),
    CNRS : UMR8549 – Université Paris VI - Pierre et Marie Curie – Ecole Normale Supérieure de Paris - ENS Paris