Random walks on the braid group B_3 and magnetic translations in hyperbolic geometry

Raphael Voituriez 1

Nuclear Physics B 621 (2002) 675-688

We study random walks on the three-strand braid group $B_3$, and in particular compute the drift, or average topological complexity of a random braid, as well as the probability of trivial entanglement. These results involve the study of magnetic random walks on hyperbolic graphs (hyperbolic Harper-Hofstadter problem), what enables to build a faithful representation of $B_3$ as generalized magnetic translation operators for the problem of a quantum particle on the hyperbolic plane.

  • 1. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI - Paris Sud