Statistical properties of charged interfaces

Sofian Teber 1

Journal of Physics: Condensed Matter 14 (2002) 7811-7834

We consider the equilibrium statistical properties of interfaces submitted to competing interactions; a long-range repulsive Coulomb interaction inherent to the charged interface and a short-range, anisotropic, attractive one due to either elasticity or confinement. We focus on one-dimensional interfaces such as strings. Model systems considered for applications are mainly aggregates of solitons in polyacetylene and other charge density wave systems, domain lines in uniaxial ferroelectrics and the stripe phase of oxides. At zero temperature, we find a shape instability which lead, via phase transitions, to tilted phases. Depending on the regime, elastic or confinement, the order of the zero-temperature transition changes. Thermal fluctuations lead to a pure Coulomb roughening of the string, in addition to the usual one, and to the presence of angular kinks. We suggest that such instabilities might explain the tilting of stripes in cuprate oxides. The 3D problem of the charged wall is also analyzed. The latter experiences instabilities towards various tilted phases separated by a tricritical point in the elastic regime. In the confinement regime, the increase of dimensionality favors either the melting of the wall into a Wigner crystal of its constituent charges or a strongly inclined wall which might have been observed in nickelate oxides.

  • 1. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI - Paris Sud