Statistical properties of the 2D attached Rouse chain

Olivier Benichou 1, 2, Jean Desbois 2

Journal of Statistical Physics 101 (2000) 921-931

We study various dynamical properties (winding angles, areas) of a set of harmonically bound Brownian particles (monomers), one endpoint of this chain being kept fixed at the origin 0. In particular, we show that, for long times t, the areas {A_i} enclosed by the monomers scale like t^{1/2}, with correlated gaussian distributions. This is at variance with the winding angles {\theta_i} around fixed points that scale like t and are distributed according to independent Cauchy laws.

  • 1. Laboratoire de Physique Théorique des Liquides (LPTL),
    CNRS : UMR7600 – Université Paris VI - Pierre et Marie Curie
  • 2. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI - Paris Sud