The Hierarchical Random Energy Model

Michele Castellana 1, Aurelien Decelle 1, Silvio Franz 1, Marc Mezard 1, Giorgio Parisi 2

Physical Review Letters 104 (2010) 1277206

We introduce a Random Energy Model on a hierarchical lattice where the interaction strength between variables is a decreasing function of their mutual hierarchical distance, making it a non-mean field model. Through small coupling series expansion and a direct numerical solution of the model, we provide evidence for a spin glass condensation transition similar to the one occuring in the usual mean field Random Energy Model. At variance with mean field, the high temperature branch of the free-energy is non-analytic at the transition point.

  • 1. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI - Paris Sud
  • 2. Dipartimento di Fisica,
    Università Roma I